
1

Program	Structures

Slides	adapted	from	Craig	Zilles

2

Unix	and	Command	Line
¢ ls – list	files
¢ cat – concatenate	files	mostly	used	to	output	file
¢ cd – change	directory

§ change	to	home	directory	if	no	directory	given
¢ pwd – print	working	directory	
¢ mkdir – make	directory
¢ mv – move
¢ rm - remove

3

Principles	of	straight-line	code
¢ Make	dependences	obvious:

(e.g.,	through	passing	arguments,	return	values)

firstResult = doThing1();
secondResult = doThingY(firstResult);

¢ Vs.

doThing1();
doThingY();

4

Principles	of	straight-line	code,	cont.
¢ If	no	dependences,	group	related	statements

§ If	you	were	to	draw	boxes	around	related	statements

Code Complete 14. Organizing Straight-Line Code Page 7

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:44 PM
H:\books\CodeC2Ed\Reviews\Web\14-Control-StraightLineCode.doc

Grouping Related Statements 223

Put related statements together. They can be related because they operate on the 224

same data, perform similar tasks, or depend on each other’s being performed in 225

order. 226

An easy way to test whether related statements are grouped well is to print out a 227

listing of your routine and then draw boxes around the related statements. If the 228

statements are ordered well, you’ll get a picture like that shown in Figure 14-1, 229

in which the boxes don’t overlap. 230

 231

F14xx01 232

Figure 14-1 233

If the code is well organized into groups, boxes drawn around related sections don’t 234

overlap. They might be nested. 235

If statements aren’t ordered well, you’ll get a picture something like that shown 236

in Figure 14-2, in which the boxes do overlap. If you find that your boxes 237

overlap, reorganize your code so that related statements are grouped better. 238

CROSS-REFERENCE If
you follow the Pseudocode
Programming Process, your
code will automatically be
grouped into related
statements. For details on the
process, see Chapter 9, “The
Pseudocode Programming
Process.”

Code Complete 14. Organizing Straight-Line Code Page 8

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:44 PM
H:\books\CodeC2Ed\Reviews\Web\14-Control-StraightLineCode.doc

 239

F14xx02 240

Figure 14-2 241

If the code is organized poorly, boxes drawn around related sections overlap. 242

Once you’ve grouped related statements, you might find that they’re strongly 243

related and have no meaningful relationship to the statements that precede or 244

follow them. In such a case, you might want to put the strongly related 245

statements into their own routine. 246

Checklist: Organizing Straight-Line Code 247

 Does the code make dependencies among statements obvious? 248

 Do the names of routines make dependencies obvious? 249

 Do parameters to routines make dependencies obvious? 250

 Do comments describe any dependencies that would otherwise be unclear? 251

 Have housekeeping variables been used to check for sequential 252

dependencies in critical sections of code? 253

 Does the code read from top to bottom? 254

 Are related statements grouped together? 255

 Have relatively independent groups of statements been moved into their own 256

routines? 257

 258

Key Points 259

● The strongest principle for organizing straight-line code is order 260

dependencies. 261

CC2E.COM/ 1472

Good Poor

5

Grouping	related	items	(example)
¢ Ordering	implicit,	but	emphasizes	grouping

MarketingData marketingData = new MarketingData();
marketingData.ComputeQuarterly();
marketingData.ComputeAnnual();
marketingData.Print();

SalesData salesData = new SalesData();
salesData.ComputeQuarterly();
salesData.ComputeAnnual();
salesData.Print();

6

Which	is	better?

if (!done) {
...

}

A

B

C			 Control	flow	is	fine	for	both
D Control	flow	is	problematic	for	both

if (done == false) {
...

}

7

Which	is	better?
if (!task.isDone()) {

task.restart();
} else {

toDoList.markCompleted(task);
}

A

B

C			 Control	flow	is	fine	for	both
D Control	flow	is	problematic	for	both

if (task.isDone()) {
toDoList.markCompleted(task);

} else {
task.restart();

}

8

Which	is	best?
if (getAmountOfGasInTank() >= gasNeeded(destination)) {

// avoid unnecessary stops; reduce wear on engine
} else {

fillGasTank();
}

A

B
if (getAmountOfGasInTank() < gasNeeded(destination)) {

fillGasTank();
} else {

// avoid unnecessary stops; reduce wear on engine
} if (gasNeeded(destination) < getAmountOfGasInTank()) {

// avoid unnecessary stops; reduce wear on engine
} else {

fillGasTank();
}

C

D
if (gasNeeded(destination) >= getAmountOfGasInTank()) {

fillGasTank();
} else {

// avoid unnecessary stops; reduce wear on engine
}

9

Principles	of	if/else

¢ write	the	common	case	first;	then	write	the	unusual	cases
§ More	precisely,	cover	first	the	case	that	will	reduce	the	
reader’s	cognitive	load

¢ Encode	complex	Boolean	expressions	in	methods
§ Naming	documents	the	meaning	of	the	expression
§ Even	if	the	method	is	only	called	in	one	place

¢ Use	case/switch	only	when	it	applies
§ Don’t	do	nasty	things	with	it

10

Power	of	De	Morgan’s	Theorem
the	complement	of	the	union	of	
two	sets	is	the	same	as	the	
intersection	of	their	
complements;	and

the	complement	of	the	
intersection	of	two	sets	is	the	
same	as	the	union	of	their	
complements.

11

De	Morgan’s	Law	in	practice
¢ Simplify	expression	to	avoid	double	negatives

¢ Instead	of:

if (!(printer.hasPower() && !printer.hasPaper())) {

¢ Write:

if (!printer.hasPower() || printer.hasPaper()) {

12

Which	is	better?
public static Map<Integer, Integer> generateHistogram2(int[] data) {

Map<Integer, Integer> histogram = new HashMap<Integer, Integer>();
for (int value : data) {

int count = 1 +
(histogram.containsKey(value) ? histogram.get(value) : 0);

histogram.put(value, count);
}
return histogram;

}

A

B

C			 Control	flow	is	equivalent	for	both
D Control	flow	is	problematic	for	both

public static Map<Integer, Integer> generateHistogram3(int[] data) {
Map<Integer, Integer> histogram = new HashMap<Integer, Integer>();
for (int i = 0; i < data.length; i++) {

int value = data[i];
int count = 1 +

(histogram.containsKey(value) ? histogram.get(value) : 0);
histogram.put(value, count);

}
return histogram;

}

13

Which	is	better?
public int[] copyIntArray(int[] input) {

int [] copy = new int[input.length];
int i = 0;
for (int value: input) {

copy[i++] = value;
}
return copy;

}

A

B

C			 Control	flow	is	fine	for	both
D Control	flow	is	problematic	for	both

public int[] copyIntArray(int[] input) {
int [] copy = new int[input.length];
for (int i = 0; i < input.length; i++) {

copy[i] = input[i];
}
return copy;

}

14

Which	is	better?
boolean dashFound = false;
for (String arg : args) {

if (arg.equals("-")) {
dashFound = true;

} else if (!dashFound) {
process1(arg);

} else {
process2(arg);

}
}

A

B int i = 0;
while(i < args.length && !args[i].equals("-")) {

process1(args[i]);
i++;

}

i++; // skip the dash
for(; i < args.length ; i++) {

process2(args[i]);
} C			 Control	flow	is	fine	for	both

D Control	flow	is	problematic	for	both

This	code	takes	an	array	of	strings,	it	
processes	all	of	the	strings	before	a	
dash	one	way	and	all	of	the	
remaining	strings	another	way.
Assume	there	is	only	one	dash	in	the	
array	of	strings.

15

Returns
¢ use	early	returns	to	reduce	nesting,	eliminate	cases	

§ guard	clauses
¢ minimize	the	number	of	returns	in	a	routine	

§ all	things	being	equal

16

Gin	rummy
¢ Simple	2	player	card	game	using	standard	card	deck
¢ 10	card	hands
¢ Meld

§ Set	of	cards	with	the	same	value	(3	or	4	cards)
§ Set	of	cards	with	values	in	order	(3	or	more)

¢ Deadwood
§ Value	of	all	cards	in	hand	not	in	melds

¢ Play
§ Take	from	top	of	discard	or	draw	then	discard
§ Knock	revealing	hand	to	score	(dead

¢ Scoring	Knock
§ NonKnocking deadwood	– Knocking	deadwood

