Program Structures

Slides adapted from Craig Zilles

Unix and Command Line

m 1s -listfiles
m cat - concatenate files mostly used to output file

cd - change directory
= change to home directory if no directory given
pwd — print working directory
mkdir — make directory
mv — move

m-remove

Principles of straight-line code

m Make dependences obvious:
(e.g., through passing arguments, return values)

firstResult = doThingl();
secondResult = doThingY(firstResult);

m Vs.

doThingl();
doThing¥ () ;

Principles of straight-line code, cont.

m If no dependences, group related statements
" |f you were to draw boxes around related statements

Good Poor

Grouping related items (example)

m Ordering implicit, but emphasizes grouping

MarketingData marketingData = new MarketingData();
marketingData.ComputeQuarterly();
marketingData.ComputeAnnual ();
marketingData.Print ();

SalesData salesData = new SalesData();
salesData.ComputeQuarterly();
salesData.ComputeAnnual ();
salesData.Print();

Which is better?

A |if (!done) {

}

B if (done == false) {

}

C Control flow is fine for both
D Control flow is problematic for both

T
Which is better?

A | if (!ltask.isDone()) {

task.restart ();
} else {
toDolList.markCompleted(task);

B if (task.isDone()) {
toDoList.markCompleted (task);
} else {
task.restart ();

C Control flow is fine for both
D Control flow is problematic for both

T
Which is best?

A | if (getAmountOfGasInTank() >= gasNeeded(destination)) {
// avoid unnecessary stops; reduce wear on engine

} else {
fillGasTank () ;

if (getAmountOfGasInTank() < gasNeeded(destination)) {
B fillGasTank();
} else {

// avoid unnecessary stops; reduce wear on engine

if (gasNeeded(destination) < getAmountOfGasInTank()) {
// avoid unnecessary stops; reduce wear on engine

C } else {

fillGasTank();

if (gasNeeded(destination) >= getAmountOfGasInTank()) {
D fillGasTank();
} else {

// avoid unnecessary stops; reduce wear on engine

Principles of if/else

m write the common case first; then write the unusual cases

" More precisely, cover first the case that will reduce the
reader’s cognitive load

m Encode complex Boolean expressions in methods
" Naming documents the meaning of the expression

" Even if the method is only called in one place

m Use case/switch only when it applies
" Don’t do nasty things with it

Power of De Morgan’s Theorem
(1

the complement of the union of
two sets is the same as the
intersection of their
complements; and

the complement of the
intersection of two sets is the
same as the union of their
complements.

De Morgan’s Law in practice

m Simplify expression to avoid double negatives

m Instead of:

if (! (printer.hasPower() && !printer.hasPaper())) {

m Write:

if (!printer.hasPower() || printer.hasPaper()) {

1"

Which is better?

A public static Map<Integer, Integer> generateHistogram2(int[] data) {
Map<Integer, Integer> histogram = new HashMap<Integer, Integer>();
for (int value : data) {

int count =1 +

(histogram.containsKey(value) ? histogram.get(value) : 0);
histogram.put(value, count);

}

return histogram;

}

B public static Map<Integer, Integer> generateHistogram3(int[] data) {
Map<Integer, Integer> histogram = new HashMap<Integer, Integer>();
for (int i = 0; i < data.length; i++) {

int value = data[i];

int count =1 +

(histogram.containsKey(value) ? histogram.get(value) : 0);
histogram.put (value, count);

}

return histogram;

}

C Control flow is equivalent for both
D Control flow is problematic for both

12

Which is better?

A public int[] copyIntArray(int[] input) {
int [] copy = new int[input.length];
int i = 0;
for (int value: input) {

copy[i++] = value;

}

return copy;

B public int[] copyIntArray(int[] input) {

int [] copy = new int[input.length];

for (int i = 0; i1 < input.length; i++) {
copy[i] = input[i];

}

return copy;

}

C Control flow is fine for both
D Control flow is problematic for both

13

Wh iCh iS bEtte r? This code takes an array of strings, it

processes all of the strings before a
l\ boolean dashFound = false;
for (String arg : args) { dash one way and all of the
if (arg.equals("-")) { remaining strings another way.

dashFound = true; Assume there is only one dash in the
} else if (!dashFound) { .
array of strings.
processl (arg);

} else {
process2(arg);

}

E; int i = 0;

while(i < args.length && !args[i].equals("-")) {
processl (args[i]);
i++;

}

i++; // skip the dash
for(; i < args.length ; i++) {
process2(args[i]);

}

C Control flow is fine for both

D Control flow is problematic for both

Returns

m use early returns to reduce nesting, eliminate cases
= guard clauses

m minimize the number of returns in a routine
= all things being equal

15

-
Gin rummy

m Simple 2 player card game using standard card deck
m 10 card hands
m Meld
= Set of cards with the same value (3 or 4 cards)
= Set of cards with values in order (3 or more)
m Deadwood
= Value of all cards in hand not in melds
m Play
= Take from top of discard or draw then discard
= Knock revealing hand to score (dead
m Scoring Knock
" NonKnocking deadwood — Knocking deadwood

16

