
1

Introduction	to
Design	Patterns

Slides	adapted	from	Craig	Zilles

2

Design	Pattern
¢ “Each	pattern	describes	a	problem	which	occurs	over	and	

over	again	in	our	environment,	and	then	describes	the	core	
of	the	solution	to	that	problem,	in	such	a	way	that	you	can	
use	this	solution	a	million	times	over,	without	ever	doing	it	
the	same	way	twice.”		-- Christopher	Alexander

¢ Each	pattern	has	4	essential	elements:
§ A	name
§ The	problem	it	solves
§ The	solution
§ The	consequences

3

Let’s	start	with	some	“Micro-Patterns”	(1)
¢ Name: Most-wanted	holder
¢ Problem:	Want	to	find	the	“most	wanted”	element	of	a	

collection.
¢ Solution:	Initialize	most-wanted	holder	to	first	element.		

Compare	every	other	element	to	value	in	most-wanted	
holder,	replace	if	the	new	value	is	better.

Thing mostWanted = things[0];
for (int i = 1 ; i < things.length ; i ++) {

if (thing[i].isBetterThan(mostWanted)) {
mostWanted = thing[i];

}
}

4

Let’s	start	with	some	“Micro-Patterns”	(2)
¢ Name: One-way	flag
¢ Problem:	Want	to	know	if	a	property	is	true/false	for	every	

element	of	a	collection.
¢ Solution:	Initialize	a	boolean to	one	value.		Traverse	the	

whole	collection,	setting	the	boolean to	the	other	value	if	an	
element	violates	the	property.

boolean allValid = true;
for (Thing thing : things) {

if (!thing.isValid()) {
allValid = false;
break;

}
}

5

Let’s	start	with	some	“Micro-Patterns”	(3)
¢ Name: Follower
¢ Problem:Want	to	compare	adjacent	elements	of	collection.
¢ Solution:	As	you	iterate	through	a	collection,	set	the	value	of	

the	follower	variable	to	the	current	element	as	the	last	step.

boolean collectionInOrder = true;
Thing follower = null;
for (Thing thing : things) {

if (follower != null &&
thing.isBiggerThan(follower)) {

collectionInOrder = false;
}
follower = thing;

}

6

Other	”Micro-Patterns”

7

How	hard	was	week	5	code	review	assignment?

A)	Easy
B)	Moderate
C)	Challenging
D)	Unreasonable

8

How	long	did	week	5	assignment	take?
A)	Less	than	3	hours
B)	2	to	6	hours
C)	6	to	9	hours
D)	9	to	12	hours
E)	More	than	12	hours

9

“Design	Patterns”	focus	on	object-level
¢ Relate	to	relationships	between	classes	&	objects

§ IsA (inheritance)	and	HasA (containment)	relationships

¢ Many	of	these	seem	obvious	(in	hind	sight)
§ The	power	is	giving	these	names,	codifying	a	best	practice	
solution,	and	understanding	their	strengths/limitations.

10

UML	Class	Diagrams
¢ Unified	Modeling	Language	(UML)

§ A	standard	for	diagrammatic	representations	in	software	
engineering.

¢ The	Class	Diagram	is	the	main	building	block	for	object-
oriented	modeling;	it	shows:
§ the	system's	classes
§ their	attributes and	operations	(or	methods),	and	
§ the	relationships	among	objects

11

Class/Object	Notation
¢ Class	definitions

Design Patterns: Elements of Reusable Object-Oriented Software

405

Figure B.1: Class diagram notation

In some design patterns it's helpful to see where client classes reference
Participant classes. When a pattern includes a Clientclass as one of its
participants (meaning the client has aresponsibility in the pattern), the Client
appears as an ordinaryclass. This is true in Flyweight (218), for example. When
the pattern does not include a Client participant(i.e., clients have no
responsibilities in the pattern), butincluding it nevertheless clarifies which

Abstract	in	italics

Types	are	optional;
included	when	useful

Methods	have	parentheses
Variables	do	not

12

Class/Object	Notation	(cont.)
¢ Class	relationships

Design Patterns: Elements of Reusable Object-Oriented Software

405

Figure B.1: Class diagram notation

In some design patterns it's helpful to see where client classes reference
Participant classes. When a pattern includes a Clientclass as one of its
participants (meaning the client has aresponsibility in the pattern), the Client
appears as an ordinaryclass. This is true in Flyweight (218), for example. When
the pattern does not include a Client participant(i.e., clients have no
responsibilities in the pattern), butincluding it nevertheless clarifies which

Diamond	=	Has	A collection	of

Solid	line	=	Has	A	(containment)

Solid	dot	=	multiple

Dashed	line	=	creates

Triangle	=	Inheritance	(Is	A)

13

Class/Object	Notation	(cont.)
¢ Object	instances

Design Patterns: Elements of Reusable Object-Oriented Software

407

Figure B.2: Object diagram notation

Interaction Diagram

An interaction diagram shows the order in which requests between objectsget

executed. Figure B.3 is aninteraction diagram that shows how a shape gets added

to a drawing.

Figure B.3: Interaction diagram notation

Time flows from top to bottom in an interaction diagram. A solidvertical line

indicates the lifetime of a particular object. Thenaming convention for objects

is the same as for object diagrams—theclass name prefixed by the letter "a" (e.g.,
aShape). If the objectdoesn't get instantiated until after the beginning of time

as recordedin the diagram, then its vertical line appears dashed until the pointof

creation.

Objects	have	rounded	corners

14

Relationships

15

Strategy
¢ Intent:	define	a	family	of	algorithms,	encapsulate	each	one,	

and	make	them	interchangable.		Strategy	lets	the	algorithm	
vary	independently	from	clients	that	use	it.

¢ Use	the	strategy	pattern	when:
§ Many	related	classes	differ	only	in	their	behavior.
§ You	need	different	variants	of	an	algorithm	(e.g.,	trade-offs)
§ An	algorithm	uses	data	that	clients	shouldn’t	know	about

§ E.g.,	encapsulate	the	algorithm	data	from	client

§ A	class	defines	multiple	behaviors	and	these	are	
implemented	using	conditionals.

16

Strategy	Pattern

Design Patterns: Elements of Reusable Object-Oriented Software

351

Structure

Participants

• Strategy (Compositor)
o declares an interface common to all supported algorithms. Context

uses this interface to call the algorithm defined by a
ConcreteStrategy.

• ConcreteStrategy (SimpleCompositor, TeXCompositor,ArrayCompositor)
o implements the algorithm using the Strategy interface.

• Context (Composition)
o is configured with a ConcreteStrategy object.
o maintains a reference to a Strategy object.
o may define an interface that lets Strategy access its data.

Collaborations

• Strategy and Context interact to implement the chosen algorithm. Acontext
may pass all data required by the algorithm to the strategywhen the algorithm
is called. Alternatively, the context can passitself as an argument to
Strategy operations. That lets the strategycall back on the context as
required.

• A context forwards requests from its clients to its strategy. Clientsusually
create and pass a ConcreteStrategy object to the context;thereafter,
clients interact with the context exclusively. There isoften a family of
ConcreteStrategy classes for a client to choosefrom.

Consequences

The Strategy pattern has the following benefits and drawbacks:

¢ Solution
§ Strategy	abstract	base	class	exposes	algorithm	interface.
§ Context	object	HasA Concrete	Strategy	object.
§ Context	object	invokes	algorithm	interface	from	strategy.

17

Problem:	Social	media	updates
¢ You	have	your	InstaTwitInYouFaceTrest app	open	and	a	

friend	makes	a	post	/	updates	their	status.		How	do	you	get	
the	info	before	the	next	time	you	(manually)	refresh	your	
app?

18

The	Observer	Pattern	(a.k.a.	Publish/Subscribe)
¢ Problem:	Keep	a	group	of	objects	“in	sync”	in	the	presence	of	

asynchronous	updates,	while	minimizing	the	amount	of	
coupling.

¢ Intent:	Define	a	one-to-many	dependency	between	objects	
so	that	when	one	object	changes	state,	all	its	dependents	are	
notified	and	updated	automatically.

¢ Use	the	Observer	pattern	when:
§ When	changes	to	one	object	requires	changes	to	other	and	
you	don’t	know	which	and/or	how	many.

§ When	an	object	should	be	able	to	notify	other	objects	
without	making	assumptions	about	who	these	other	objects	
are	(i.e.,	you	don’t	want	these	objects	tightly	coupled).

19

Observer	Pattern
A)	Classes
B)	Objects

Design Patterns: Elements of Reusable Object-Oriented Software

328

Structure

Participants

• Subject

o knows its observers. Any number of Observer objects may observe a

subject.

o provides an interface for attaching and detaching Observer objects.

• Observer

o defines an updating interface for objects that should be notified

of changes in a subject.

• ConcreteSubject

o stores state of interest to ConcreteObserver objects.

o sends a notification to its observers when its state changes.

• ConcreteObserver

o maintains a reference to a ConcreteSubject object.

o stores state that should stay consistent with the subject's.

o implements the Observer updating interface to keep its state

consistent with the subject's.

Collaborations

• ConcreteSubject notifies its observers whenever a changeoccurs that could
make its observers' state inconsistent with its own.

• After being informed of a change in the concrete subject, aConcreteObserver
object may query the subject for information.ConcreteObserver uses this

information to reconcile its state with thatof the subject.

20

Observer	Pattern
A)	HasA (containment)
B)	IsA (inheritance)

Design Patterns: Elements of Reusable Object-Oriented Software

328

Structure

Participants

• Subject

o knows its observers. Any number of Observer objects may observe a

subject.

o provides an interface for attaching and detaching Observer objects.

• Observer

o defines an updating interface for objects that should be notified

of changes in a subject.

• ConcreteSubject

o stores state of interest to ConcreteObserver objects.

o sends a notification to its observers when its state changes.

• ConcreteObserver

o maintains a reference to a ConcreteSubject object.

o stores state that should stay consistent with the subject's.

o implements the Observer updating interface to keep its state

consistent with the subject's.

Collaborations

• ConcreteSubject notifies its observers whenever a changeoccurs that could
make its observers' state inconsistent with its own.

• After being informed of a change in the concrete subject, aConcreteObserver
object may query the subject for information.ConcreteObserver uses this

information to reconcile its state with thatof the subject.

21

Observer	Pattern
¢ Solution:

§ Observers	can	“attach”	to	a	Subject.
§ When	Subject	is	updated,	it	calls	Update()	on	all	Observers
§ Observers	can	query	Subject	for	updated	state.

Design Patterns: Elements of Reusable Object-Oriented Software

328

Structure

Participants

• Subject

o knows its observers. Any number of Observer objects may observe a

subject.

o provides an interface for attaching and detaching Observer objects.

• Observer

o defines an updating interface for objects that should be notified

of changes in a subject.

• ConcreteSubject

o stores state of interest to ConcreteObserver objects.

o sends a notification to its observers when its state changes.

• ConcreteObserver

o maintains a reference to a ConcreteSubject object.

o stores state that should stay consistent with the subject's.

o implements the Observer updating interface to keep its state

consistent with the subject's.

Collaborations

• ConcreteSubject notifies its observers whenever a changeoccurs that could
make its observers' state inconsistent with its own.

• After being informed of a change in the concrete subject, aConcreteObserver
object may query the subject for information.ConcreteObserver uses this

information to reconcile its state with thatof the subject.

22

Design Patterns: Elements of Reusable Object-Oriented Software

407

Figure B.2: Object diagram notation

Interaction Diagram

An interaction diagram shows the order in which requests between objectsget

executed. Figure B.3 is aninteraction diagram that shows how a shape gets added

to a drawing.

Figure B.3: Interaction diagram notation

Time flows from top to bottom in an interaction diagram. A solidvertical line

indicates the lifetime of a particular object. Thenaming convention for objects

is the same as for object diagrams—theclass name prefixed by the letter "a" (e.g.,
aShape). If the objectdoesn't get instantiated until after the beginning of time

as recordedin the diagram, then its vertical line appears dashed until the pointof

creation.

Class/Object	Notation	(cont.)
¢ Interaction	Diagram

Time
passing

Solid	horizontal	
line	=	invocation

Solid	vertical	line	=	existed	before/after	interaction
Dashed	vertical	line	=	didn’t	exist

Box	=	period	
active	during	
interaction

Dashed	horizontal	
line	=	creation

23

Observer	Pattern	Interaction	Example
¢ aConcreteObserver modifies	a	ConcreteSubject

Design Patterns: Elements of Reusable Object-Oriented Software

329

The following interaction diagram illustrates the collaborationsbetween

a subject and two observers:

Note how the Observer object that initiates the change requestpostpones

its update until it gets a notification from the subject.Notify is not always

called by the subject. It can be called by anobserver or by another kind

of object entirely. The Implementationsection discusses some common

variations.

Consequences

The Observer pattern lets you vary subjects and observersindependently. You can

reuse subjects without reusing theirobservers, and vice versa. It lets you add

observers withoutmodifying the subject or other observers.

Further benefits and liabilities of the Observer pattern include thefollowing:

1. Abstract coupling between Subject and Observer.All a subject knows is that

it has a list of observers, eachconforming to the simple interface of the

abstract Observer class.The subject doesn't know the concrete class of any

observer. Thus thecoupling between subjects and observers is abstract and

minimal.

Because Subject and Observer aren't tightly coupled, they can belong

todifferent layers of abstraction in a system. A lower-level subjectcan

communicate and inform a higher-level observer, thereby keeping

thesystem's layering intact. If Subject and Observer are lumpedtogether,

then the resulting object must either span two layers (andviolate the

24

Problem:	New	interface	for	Gin	rummy
superginrummy.com is	opening	and	having	an	AI	contest	for	
the	best	gin	rummy	AI.	You	want	to	use	the	code	you	have	
been	writing	but	the	interface	if	different.	How	do	you	avoid	
rewriting	your	code	to	implement	the	new	interface?

25

Adapter	Pattern
¢ Intent:	Convert	the	interface	of	a	class	into	another	interface	

that	a	client	expects.		Adapter	lets	classes	work	together	that	
couldn’t	otherwise	because	of	incompatible	interfaces.

¢ Use	the	Adapter	pattern	when:
§ You	want	to	use	an	existing	class	and	interface	doesn’t	match	the	

one	that	you	need
§ You	want	to	create	a	reusable	class	that	cooperates	with	

unrelated	and	unforeseen	classes	(non-compatible	interfaces)
§ You	need	to	use	several	existing	subclasses,	but	it’s	impractical	to	

adapt	their	interface	by	subclassing every	one.

26

Adapter	Pattern
¢ Solution:

§ Adapter	class	IsA derived	class	of	Target	type
§ Adapter	class	HasA Adaptee class
§ Adapter	class	delegates	requests	to	Adaptee class

Design Patterns: Elements of Reusable Object-Oriented Software

159

• you want to create a reusable class that cooperates with unrelated or
unforeseen classes, that is, classes that don't necessarily have compatible
interfaces.

• (object adapter only) you need to use several existing subclasses, but it's
impractical to adapt their interface by subclassing every one. An object
adapter can adapt the interface of its parent class.

Structure

A class adapter uses multiple inheritance to adapt one interface to another:

An object adapter relies on object composition:

Participants

• Target (Shape)
o defines the domain-specific interface that Client uses.

• Client (DrawingEditor)
o collaborates with objects conforming to the Target interface.

• Adaptee (TextView)
o defines an existing interface that needs adapting.

27

28

Scrabble

29

Scrabble	word	score

¢ Sum	of	the	letter	values

30

Scrabble	word	score,	continued
public static int wordScore(String word) {

int score = 0;
for (int i = 0 ; i < word.length() ; i++) {

char letter = word.charAt(i);
score += letterScore(letter);

}
return score;

}

31

Control-flow	based
public static int letterScore(char c) {

char upperC =
Character.toUpperCase(c);

switch (upperC) {
case 'A':
case 'E':
case 'I':
case 'L':
case 'N':
case 'O':
case 'R':
case 'S':
case 'T':
case 'U':

return 1;
case 'D':
case 'G':

return 2;
case 'B':
case 'C':
case 'M':
case 'P':

return 3;

case 'F':
case 'H':
case 'V':
case 'W':
case 'Y':

return 4;
case 'K':

return 5;
case 'J':
case 'X':

return 8;
case 'Q':
case 'Z':

return 10;
default:

// handle error
}
// should never reach here
return 0;

}

32

Table-based	Solution
private static final int [] scoresByChar =
{/* A */ 1, /* B */ 3, /* C */ 3, /* D */ 2, /* E */ 1,
/* F */ 4, /* G */ 2, /* H */ 4, /* I */ 1, /* J */ 8,
/* K */ 5, /* L */ 1, /* M */ 3, /* N */ 1, /* O */ 1,
/* P */ 3, /* Q */ 10, /* R */ 1, /* S */ 1, /* T */ 1,
/* U */ 1, /* V */ 4, /* W */ 4, /* X */ 8, /* Y */ 4,
/* Z */ 10};

public static int letterScore2(char c) {
char cAsUppercase = Character.toUpperCase(c);
int index = cAsUppercase - 'A';
if (index < 0 || index >= 26) {
// handle error

}
return scoresByChar[index];

}

