Introduction to
Design Patterns

Slides adapted from Craig Zilles

Design Patterns

Elements of Reusable

Erich Gamma®
Richard Helm
Ralph Johnson
John Vhssndes

Foreword by Grady Booch

?

SARIIS ONILNIWOD TVYNOISSI10¥d ATTISIM-NOSIAAV

Design Pattern

m “Each pattern describes a problem which occurs over and
over again in our environment, and then describes the core
of the solution to that problem, in such a way that you can
use this solution a million times over, without ever doing it
the same way twice.” -- Christopher Alexander

m Each pattern has 4 essential elements:
" Aname
" The problem it solves
" The solution
= The consequences

Let’s start with some “Micro-Patterns” (1)

m Name: Most-wanted holder

m Problem: Want to find the “most wanted” element of a
collection.

m Solution: Initialize most-wanted holder to first element.
Compare every other element to value in most-wanted
holder, replace if the new value is better.

Thing mostWanted = things[O0];
for (int 1 =1 ; 1 < things.length ; i ++) {
if (thing[i].isBetterThan(mostWanted)) {
mostWanted = thing[i];

Let’s start with some “Micro-Patterns” (2)

m Name: One-way flag

m Problem: Want to know if a property is true/false for every
element of a collection.

m Solution: Initialize a boolean to one value. Traverse the
whole collection, setting the boolean to the other value if an
element violates the property.

boolean allValid = true;

for (Thing thing : things) {

if (!thing.isValid()) {
allvalid = false;
break;

Let’s start with some “Micro-Patterns” (3)

m Name: Follower
m Problem: Want to compare adjacent elements of collection.

m Solution: As you iterate through a collection, set the value of
the follower variable to the current element as the last step.

boolean collectionInOrder = true;
Thing follower = null;
for (Thing thing : things) {
if (follower != null &&
thing.isBiggerThan(follower)) {
collectionInOrder = false;

}

follower = thing;

Other "Micro-Patterns”

How hard was week 5 code review assignment?

A) Easy

B) Moderate

C) Challenging
D) Unreasonable

How long did week 5 assignment take?

A) Less than 3 hours
B) 2 to 6 hours

C) 6 to 9 hours

D) 9 to 12 hours

E) More than 12 hours

“Design Patterns” focus on object-level

m Relate to relationships between classes & objects
" |sA (inheritance) and HasA (containment) relationships

m Many of these seem obvious (in hind sight)

" The power is giving these names, codifying a best practice
solution, and understanding their strengths/limitations.

UML Class Diagrams

m Unified Modeling Language (UML)

= A standard for diagrammatic representations in software
engineering.

m The Class Diagram is the main building block for object-
oriented modeling; it shows:

" the system's classes
" their attributes and operations (or methods), and
" the relationships among objects

10

Class/Object Notation

m Class definitions

Abstract in italics

I/

AbstractClassName ConcreteClassMName
AbstractUperation (] Oparation 1)
Type AbstractCUpers .‘r'-::lnE';,l Type Opearation2()

/ instanceVariable1

Type instancaVariableZ
Methods have parentheses N
Variables do not

\ Types are optional;
included when useful

1"

Class/Object Notation (cont.)

m Class relationships

Diamond = Has A collection of

Solid dot = multiple

hapeas /

Drawing L Shape

e ——

CreationTool | —/— ————————— 4-{ LineShape ,\ I-{ Color

Solid line = Has A (containment)

Triangle = Inheritance (Is A)

Dashed line = creates

12

Class/Object Notation (cont.)

m Object instances

Objects have rounded corners

II.-’ 5 DEHWing /

shape((] ®
iﬁhaﬂﬂ[g] * y

¥
[aLineShape [aCircleShape j

13

Relationships

_____ _D Realization /
Implementation

______ > Dependency

14

-
Strategy

m Intent: define a family of algorithms, encapsulate each one,
and make them interchangable. Strategy lets the algorithm
vary independently from clients that use it.

m Use the strategy pattern when:
" Many related classes differ only in their behavior.
" You need different variants of an algorithm (e.g., trade-offs)
" An algorithm uses data that clients shouldn’t know about

= E.g., encapsulate the algorithm data from client

= A class defines multiple behaviors and these are
implemented using conditionals.

15

Strategy Pattern

m Solution
= Strategy abstract base class exposes algorithm interface.
= Context object HasA Concrete Strategy object.
" Context object invokes algorithm interface from strategy.

strate
Contexl 9y -J Strategy
Contextinterface]) Algorithminterface()
AN
ConcrataStratagyA ConcreteStrategyB ConcreteStrateqyC

Algorthminterfacel) Algorithminlaerface() Algorithminterface!)

16

Problem: Social media updates

m You have your InstaTwitInYouFaceTrest app open and a
friend makes a post / updates their status. How do you get
the info before the next time you (manually) refresh your

app?

17

The Observer Pattern (a.k.a. Publish/Subscribe)

m Problem: Keep a group of objects “in sync” in the presence of
asynchronous updates, while minimizing the amount of
coupling.

m Intent: Define a one-to-many dependency between objects

so that when one object changes state, all its dependents are
notified and updated automatically.

m Use the Observer pattern when:

" When changes to one object requires changes to other and
you don’t know which and/or how many.

" When an object should be able to notify other objects
without making assumptions about who these other objects
are (i.e., you don’t want these objects tightly coupled).

18

Observer Pattern

A) Classes
B) Objects

Subject ohsenvers -_.] Obsarver

AttachiObserver) Updatel)
- ’ -\.2 . _.'|I] "
Detach|{Obsarver) tor all 0 in ohservers I,I‘ql_
Motify(} o —--- - --| o-=Update]

1

b |

Z\F‘ ConcreteObserver
. subject heervarState = =

ConcreteSubject Update 0--[-- observerslate =
GetState() ©---F-1 = observerState
aetStatel refum subjectState observerstate

setstated)

subjectstate

19

Observer Pattern

A) HasA (containment)
B) IsA (inheritance)

Subject ohsenvers -_.] Obsarver

AttachiObserver) Updatel)
- ’ -\.2 . _.'|I] "
Detach|{Obsarver) tor all 0 in ohservers I,I‘ql_
Motify(} o —--- - --| o-=Update]

1

1

Z\F‘ ConcreteObserver
. subject heervarState = =

ConcreteSubject Update 0--[-- observerslate =
GetState() ©-—-r -1) . T obsamnarstate
SetState() refum subjectState
subjectstate

20

1
Observer Pattern

m Solution:
" Observers can “attach” to a Subject.
" When Subject is updated, it calls Update() on all Observers
" Observers can query Subject for updated state.

Subject ohsenvers -_.] Obsarver

AttachiObserver) Updatel)
- ’ -\.2 . _.'|I] "
Detach|{Obsarver) tor all 0 in ohservers I,I‘ql_
Motify(} o —--- - --| o-=Update]

1

1

Z\F‘ ConcreteObserver
. subject heervarState = =

ConcreteSubject Update 0--[-- observerslate =
GetState() ©-—-r -1) . T obsamnarstate
SetState() refum subjectState
subjectstate

21

Class/Object Notation (cont.)

m Interaction D'agram Solid vertical line = existed before/after interaction

Dashed vertical line = didn’t exist

Time aCreationTool aDrawing aLineShape
passing

new LineShape

Dashed horizontal
- : line = creation
Box = period | |\ 14 ineShape)
active during w1 Rafreshi)
interaction b
Draw()
Solid horizontal -
line = invocation

22

Observer Pattern Interaction Example

m aConcreteObserver modifies a ConcreteSubject

aConcreteSubject aConcreteObserver anotherConcreteObserver

L. setxtate|)
Motify()
|
Update() .

GetState()
il
Update(}

GE’ESEEEEJLJ

23

Problem: New interface for Gin rummy

superginrummy.com is opening and having an Al contest for
the best gin rummy Al. You want to use the code you have
been writing but the interface if different. How do you avoid
rewriting your code to implement the new interface?

24

Adapter Pattern

m Intent: Convert the interface of a class into another interface
that a client expects. Adapter lets classes work together that
couldn’t otherwise because of incompatible interfaces.

m Use the Adapter pattern when:

" You want to use an existing class and interface doesn’t match the
one that you need

" You want to create a reusable class that cooperates with
unrelated and unforeseen classes (non-compatible interfaces)

" You need to use several existing subclasses, but it’s impractical to
adapt their interface by subclassing every one.

25

Adapter Pattern

m Solution:
= Adapter class IsA derived class of Target type
= Adapter class HasA Adaptee class
= Adapter class delegates requests to Adaptee class

Client = Target — | Adaptee
Request() SpecificHequest()
adaplee
Adapter

Request) *-r---———-—--—-- adaptee->5pecificRequeasi()

26

27

]
Scrabble

28

Scrabble word score

m Sum of the letter values

English-language editions of Scrabble contain 100 letter
tiles, in the following distribution:

e 2 blank tiles (scoring 0 points)

e 1 point: E x12, A x9, | x93, O x8, N x6, R X6, T x6, L x4, S
x4, U x4,

e 2 points: D x4, G x3.

e 3 points: B x2, C x2, M x2, P x2.

e 4 points: F x2, Hx2,V x2, W x2, Y x2,

e 5 points: K x1.

|

F=mo»

P SENEOu—

mo >
mo>»

-

L= -

—— ey

‘—

-~ mo»
1% U};

bt

f-
1

'm:';ii;i
.w 3
izir=]

-

.‘";0
—

D =z
0
~

.4 . >
> 4 0

<
ey
>Cc W
> c ¢

2O|ri—
O ==

)

DO B 00>

- X

Cw
c

$
!

o <

om»

-
.

'

oz
3ozxom»
=

T mm

1

Zrzmo

oz

4

:(
<~ w®m
x=ln v

Scrabble word score, continued

public static int wordScore(String word) {
int score = 0;
for (int i = 0 ; i < word.length() ; i++) {
char letter = word.charAt(i);
score += letterScore(letter);

}

return score;

30

Control-flow based

public static int letterScore(char c) {

char upperC =
Character.toUpperCase(c);

switch (upperC) {

case 'A': case 'F':
case 'E': case 'H':
case 'I': case 'V':
case 'L': case 'W':
case 'N': case 'Y':
case '0O': return 4;
case 'R': case 'K':
case 'S': return 5;
case 'T': case 'J':
case 'U': case 'X':

return 1; return 8;
case 'D': case 'Q':
case 'G': case 'Z':

return 2; return 10;
case 'B': default:
case 'C': // handle error
case 'M': }
case 'P': // should never reach here

return 3; return O;

}

K}

Table-based Solution

private static final int [] scoresByChar =

{/An=*/1, /*B */ 3, [/*~C*/ 3, /*D*/ 2, [*E */ 1,
/*F */ 4, /* G */ 2, /[/*H*/ 4,6 /* I */ 1, /* T */ 8,
/* K */ 5, /*L */ 1, /*M=*/ 3, /[*N~*/1, /0 */ 1,
/*p *x/ 3, /*0Q */ 10, /* R */ 1, /* S */ 1, /* T */ 1,
/*u x/ 1, /*VvVv */ 4, [/*W *x/ &4, /* X *x/ 8, /* Y */ 4,
/* Z %/ 10};

public static int letterScore2(char c) {
char cAsUppercase = Character.toUpperCase(c);

int index = cAsUppercase - 'A’;

if (index < 0 || index >= 26) {
// handle error

}

return scoresByChar[index];

32

