CS 173 DISCUSSION 7: RECURSIVE DEFINITIONS, STRUCTURAL INDUCTION, AND GRAPHS

Date: October 10/11, 2019.

Problem 1. Recall the following recursive definitions of strings and concatenation.

```
[Base] \lambda \in A^* [Base] \lambda \cdot t = t [Constructor] if a \in A, s \in A^*, then \langle a, s \rangle \in A^* [Constructor] \langle a, s \rangle \cdot t = \langle a, s \cdot t \rangle
```

Recall also that we proved in class that for any string $s, s \cdot \lambda = s$.

- 1. Let rev(s) denote the *reversal* of string s (i.e., s written backwards). Give a recursive definition of rev(s).
- 2. Prove that $rev(s \cdot t) = rev(t) \cdot rev(s)$. You may assume (or prove it as an exercise at home) that concatenation is associative, i.e., for any strings $r, s, t, (r \cdot s) \cdot t = r \cdot (s \cdot t)$.

Problem 2 (de Bruijn sequences and Graphs). Consider the set of length 3 strings over the binary alphabet $\{0,1\}$. A de Bruijn sequence is binary string where every length 3 binary string appears at least once. For example, we could concatenate each length 3 string in the usual order (000, 001, and so on) to get a string of length $3 \times 8 = 24$ of the form $000001010\cdots$.

(a) Find a string of length 10 that is a de Bruijn sequence.

de Bruijn sequences can be found by constructing walks in a special graph called a de Bruijn graph. Such a graph D is defined as follows. The set of vertices $V(D) = \{ij \mid i, j \in \{0, 1\}\}$, and $E(D) = \{(ij, jk) \mid i, j, k \in \{0, 1\}\}$.

- (b) Draw the de Bruijn graph.
- (c) Explain how any walk that includes every edge in the de Bruijn graph determines a de Bruijn sequence.
- (d) Explain how every de Bruijn sequence corresponds to a walk that visits every edge in the graph at least once.
- (e) Use the above observations to argue that 10 is the minimum length for a de Bruijn sequence.

de Bruijn sequences and graphs as defined here have been specialized to the case of the binary alphabet (as opposed to a general alphabet) and length 3 strings (as opposed to a general length). See the wikipedia page (https://en.wikipedia.org/wiki/De_Bruijn_sequence) for more information on such graphs and sequences.