LECTURE 8: FINITE CARDINALITY AND INDUCTION

Date: September 18, 2019.

Sequences on A: Ordered list of elements from A.

- Length two sequences (a_1, a_2) , i.e., pairs, i.e., element of $A \times A$
- Length n sequences $(a_1, a_2, \dots a_n) \in A \times A \times \dots A$

Bijective Functions:

- $f: A \to B$ is surjective/onto if range(f) = f(A) = B = codomain(f).
- $f: A \to B$ is injective/1-to-1 if distinct elements get mapped to distinct elements.
- A function is bijective if it is injective/1-to-1 and surjective/onto.

Cardinality (of finite sets): |X| = number of elements in X.

Example 1.
$$|\emptyset| = |\{0,1,2,3\}| = |\{\mathbb{N},\mathbb{Z},\mathbb{Q},\mathbb{R}\}| = |\{0,1,1,2,2\}| = |\{0,1,2\} \times \{a,b,c\}| = |\text{sequences of length } n \text{ over } \{0,1,2\}| = |\text{sequences of length } n$$

Proposition 1. The following statements hold for finite sets A and B.

- 1. If there is a surjective function $f: A \to B$ then $|A| \ge |B|$.
- 2. If there is a injective function $f: A \to B$ then $|A| \leq |B|$.
- 3. If there is a bijective function $f: A \to B$ then |A| = |B|.

Proposition 2. For a set A such that |A| = n, $|pow(A)| = 2^n$.

Induction: To prove $\forall n \in \mathbb{N} \ P(n)$

- Prove P(0) [Base Case]
- Prove for all n > 0, if P(0) AND P(1) AND \cdots AND P(n-1) then P(n) [Induction Step]

Proposition 3. Prove for all $n \in \mathbb{N}$

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

Proposition 4. Prove that for all $n \in \mathbb{N}$, $\sum_{i=0}^{n} i2^i = (n-1)2^{n+1} + 2$.

Problem 1. All horses have the same color.

Proof by induction. Predicate P(n): Any set of n-horses has the same color. To prove: $\forall n \in \mathbb{N}$ with $n \geq 1$, P(n)

Base Case: P(1). In any set containing only one horse, all horses (namely the only one) have the same color.

Induction Hypothesis: Assume that $P(1), P(2), \dots P(n-1)$ are true.

Induction Step: Consider an arbitrary set H of n+1 horses.

Let
$$H = \{h_1, h_2, \dots h_n\}$$

Consider
$$H_1 = \{h_1, h_2, \dots h_{n-1}\}$$
 and $H_2 = \{h_2, \dots h_n\}$

Since P(n-1) holds, all horses in H_1 have the same color. Also all horses in H_2 have the same color.

So $\operatorname{color}(h_1) = \operatorname{color}(h_2) = \operatorname{color}(h_3) = \cdots = \operatorname{color}(h_n)$. Hence all horses in H have the same color.