LECTURE 1: INTRODUCTION TO PROOFS

Date: August 26, 2019.

Question: What is a proof?

Problem 1. Is $n^2 + n + 41$ prime, for any n that is a non-negative integer?

Problem 2 (Euler's Conjecture). The equation

$$a^4 + b^4 + c^4 = d^4$$

has no solution when a, b, c, d are positive (non-zero) integers.

Proposition 1 (Fermat's Last Theorem). There are no positive integers x, y, z such that

$$x^n + y^n = z^n$$

for some integer n > 2.

Theorem 2 (Four Color Theorem). Every map can be colored with 4 colors, so that adjacent regions have different colors.

Conjecture: (Goldbach) Every even integer > 2 is the sum of two primes.

Problem 3. Does the following program halt for all positive integer, initial values for n?

$$\begin{array}{c} \text{while } (n \neq 1) \\ \text{ if } n \text{ is even} \\ n \leftarrow n/2 \\ \text{else} \\ n \leftarrow 3n+1 \end{array}$$