LECTURE 2: PROPOSITIONAL LOGIC

Date: August 28, 2019.

Definition 1. A **proposition** is a statement that is either true or false.

A propositional variable/Boolean variable is a variable that takes value either T (true) or F (false).

Building Complex Propositions from Propositions

P	NOT(P)

P	Q	P AND Q

P	Q	P OR Q

P	Q	P IMPLIES Q

P	Q	$P \operatorname{IFF} Q$

Logical Equivalence

Problem 1. Show that the following logical expressions are the same: (a) $P \mathsf{IMPLIES} Q$ and $(\mathsf{NOT}(P)) \mathsf{OR} Q$ (b) $P \mathsf{IMPLIES} Q$ and $(\mathsf{NOT}(Q)) \mathsf{IMPLIES} (\mathsf{NOT}(P))$, (c) $\mathsf{NOT}(P \mathsf{OR} Q)$ and $(\mathsf{NOT}(P)) \mathsf{AND} (\mathsf{NOT}(Q))$.

```
\begin{aligned} & \mathsf{NOT}(\mathsf{NOT}(P)) \equiv P \\ & \mathsf{NOT}(P \ \mathsf{OR} \ Q) \equiv (\mathsf{NOT}(P)) \ \mathsf{AND} \ (\mathsf{NOT}(Q)) \\ & \mathsf{NOT}(P \ \mathsf{AND} \ Q) \equiv (\mathsf{NOT}(P)) \ \mathsf{OR} \ (\mathsf{NOT}(Q)) \\ & \mathsf{NOT}(P \ \mathsf{IMPLIES} \ Q) \equiv P \ \mathsf{AND} \ (\mathsf{NOT}(Q)) \end{aligned}
```

 $\begin{array}{l} P \ \mathsf{AND} \ (Q \ \mathsf{AND} \ R) \equiv (P \ \mathsf{AND} \ Q) \ \mathsf{AND} \ R \\ P \ \mathsf{OR} \ (Q \ \mathsf{OR} \ R) \equiv (P \ \mathsf{OR} \ Q) \ \mathsf{OR} \ R \\ P \ \mathsf{OR} \ (Q \ \mathsf{AND} \ R) \equiv (P \ \mathsf{OR} \ Q) \ \mathsf{AND} \ (P \ \mathsf{OR} \ R) \\ P \ \mathsf{AND} \ (Q \ \mathsf{OR} \ R) \equiv (P \ \mathsf{AND} \ Q) \ \mathsf{OR} \ (P \ \mathsf{AND} \ R) \end{array}$

Question 1. Are the following pairs equivalent?

- $\bullet \ P \ \mathsf{OR} \ Q \ \mathsf{and} \ Q \ \mathsf{OR} \ P$
- $\bullet \ P \ \mathsf{AND} \ Q \ \mathrm{and} \ Q \ \mathsf{AND} \ P$
- ullet P IMPLIES Q and Q IMPLIES P