LECTURE 7: SETS

Date: September 11, 2019.

Set: An unordered collection of objects.

$$\begin{array}{ll} \emptyset = \{\} & \mathbb{N} \\ A = \{0, 2, 4, 6\} & \mathbb{Z} \\ B = \{\mathsf{B}, \mathsf{C}, \mathsf{D}, \mathsf{E}, \mathsf{F}, \mathsf{J}, \mathsf{K}, \mathsf{P}, \mathsf{Q}, \mathsf{R}, \mathsf{S}, \mathsf{T}, \mathsf{V}\} & \mathbb{Q} \\ C = \{\{0\}, \{2\}, \{4\}, \{6\}\} & \mathbb{R} \\ D = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\} & \mathbb{C} \end{array}$$

Membership: A set is defined by its **members**. $x \in A$ means "x is a member of A".

Question 1. Which of the following are true?

- 1. (a) $0 \in \emptyset$, (b) $\emptyset \in \emptyset$, (c) $A \in \emptyset$?
- 2. (a) $0 \in A$, (b) $\{0\} \in A$, (c) $\emptyset \in A$?
- 3. (a) $0 \in C$, (b) $\{0\} \in C$, (c) $\{\{0\}\} \in C$?
- 4. (a) $\emptyset \in D$, (b) $\{\emptyset\} \in D$, (c) $\{\{\emptyset\}\} \in D$?

Containment: $A \subseteq B$ (A is contained in B) iff $\forall x [x \in A \text{ IMPLIES } x \in B]$.

Question 2. Which of the following are true?

$$\emptyset \subseteq \emptyset$$
 $\emptyset \subseteq \mathbb{N}$

 $\mathbb{N}\subseteq\mathbb{N}$

$$C \subseteq A$$
 $A \subseteq C$

Set Builder Notation: $\{x \in A \mid P(x)\}$ defines the set of elements in A such that P(x) is true.

$$E = \{n \in \mathbb{N} \mid n \text{ is even}\} = \{n \in \mathbb{N} \mid \exists k \in \mathbb{N} (n = 2k)\}$$

$$F = \{x \in \mathbb{R} \mid \exists a, b \in \mathbb{Z} (b \neq 0) \text{ AND } (x = \frac{a}{b})\} = \mathbb{Q}$$

Set Operations: Let X and Y be sets.

$$X \cup Y = \{x \mid (x \in X) \text{ OR } (x \in Y)\}$$

$$X \cap Y = \{x \mid (x \in X) \text{ AND } (x \in Y)\}$$

$$X - Y = \{x \mid (x \in X) \text{ AND } (x \notin Y)\}$$

 $\overline{X} = U - X$, where U is the "universal set/domain of discourse" (when understood)

Question 3. What is

$$A \cup C$$
 $A \cap C$ $A - C$

 $C\cap\emptyset$

 $C \cup \emptyset$

Cartesian Product: $X \times Y$ consists of all ordered pairs (x, y) where $x \in X$ and $y \in Y$, i.e., $X \times Y = \{(x, y) \mid (x \in X) \text{ AND } (y \in Y)\}.$

Example 1.
$$\{0,1,2\} \times \{a,b,c\} = \{a,b,c\} \times \{0,1,2\} = \emptyset \times D = A \times C = \emptyset$$

Power Set: $pow(X) = \{Y \mid Y \subseteq X\}$

Question 4. pow(
$$\{0,1,2\}$$
) = pow(\emptyset) is (a) \emptyset , (b) $\{\emptyset\}$, (c) $\{\emptyset,\{\emptyset\}\}$, (d) not defined. pow($\{\emptyset\}$) is (a) \emptyset , (b) $\{\emptyset\}$, (c) $\{\emptyset,\{\emptyset\}\}$, (d) not defined.

Set Equality: Two sets X and Y are equal if they have the same elements, i.e., for every $x, x \in X$ IFF $x \in Y$, i.e., $X \subseteq Y$ AND $Y \subseteq X$.

Problem 1. Prove that for any sets X, Y, Z,

$$X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z).$$

Cardinality (of finite sets): |X| = number of elements in X.

Example 2.
$$|\emptyset|=$$
 $|A|=$ $|D|=$ $|\{0,1,1,2,2\}|=$ $|A\times B|=$