Lecture 11: Divisibility

Date: September 23, 2019.

Divides Relation. For integers a, b, a divides b or a is a divisor of b or b is divisible by a or b is a multiple of a iff there is an integer k such that ak = b. Notation: $a \mid b$.

Question 1. Which of the following is necessarily true? (a) 173 | 0 | 7 (b) 173 | 173 | T (c) 1 | 173 | T (d)

-1 173T (e) 0 173 + Prop; th. 0 n IMPLIES n=0

Prop: tn. n/o. because n.0=0

Prop: tn. n/n. because n.1=11, n/-n because n.(-1)=-n

Prop: tn. 1/n. because 1.n=n, 4-/n

Lemma 1. Let a, b, c, s, t be any integers.

- 1. If $a \mid b$ and $b \mid c$ then $a \mid c$.
- 2. If a | b and a | c then a | sb + tc. | Linear combination of b, b2. by is Ssibi
- 3. If $c \neq 0$, $a \mid b$ if and only if $ca \mid cb$.

Assume alb, alc. By defn. Fj. ks.t. aj=b, and ak=e sb+tc = s(aj) + t(ak) = a(sj+tk) 3) a sb+tc

Theorem 2 (Division Theorem). Let n and d be any integers such that $d \neq 0$. Then there exist a unique pair of integers q and r such that $n = q \cdot d + r \text{ AND } 0 \le r |d|.$

The number q is called the quotient (denoted qcnt(n,d)) and r is call the remainder (denoted rem(n,d)).

Problem 1. What are the quotient and remainder for the following pairs?

(32,5): 32 = 6.5 + 2 (32,-5): 32 = (-6).(-5) + 2 (-32,5) - 32 = 4(-7).5 + 39 notwert

Greatest Common Divisor. A common divisor of a and b is an integer that divides both a and b. The greatest among the common divisors is written as gcd(a, b).

Problem 2. What is the greatest common divisor for the following pairs?

$$\gcd(18,24) = 6$$
 $\gcd(8,1) = 1$ $\gcd(3,0) = 3$ $\gcd(-3,0) = 3$

Euclid's GCD Algorithm

Lemma 3. For any a, b with $b \neq 0$, gcd(a, b) = gcd(b, rem(a, b)).

from (a, b) = a - gcnt(a, b), b a = Acnt(a, b)b + rem(a, b)If $c \mid b$ and $c \mid rem(a, b)$ then $c \mid c$ Common dw(a, b) = cCommon dw(a, b) = cCommon dw(a, b) = cTo compute gcd(a, b), we can assume WLOG a, b are positive, and $a \geq b$. $c \mid d$ While (b > 0) $c \mid d$ $c \mid$

Congruence Modulo n. a is congruent to b modulo n iff $n \mid (a-b)$ This is written as $a \equiv b \pmod{n}$.

32 = 37 (mod 5). because 5 | 37-32=5 93 = 28 (mod 13) because 13 | 93-28=65

Lemma 4. $a \equiv b \pmod{n}$ iff rem(a, n) = rem(b, n).

$$a = q_a h + \lambda_a \qquad b = q_b h + \lambda_b.$$

$$a = b (mrd n) \Leftrightarrow n \mid a - b$$

$$\Leftrightarrow n \mid q_a n + \lambda_a - (q_b n + h_b)$$

$$\Leftrightarrow n \mid n (q_a - q_b) + (\lambda_a - h_b)$$

$$\Leftrightarrow n \mid \lambda_a - h_b. \qquad -|n| < \lambda_a - \lambda_b < |n|$$

$$\Leftrightarrow \lambda_a - \lambda_b = 0$$

Lemma 5. For any integers a, b, c, and n the following hold.

$$a \equiv a \pmod{n} \text{ [reflexivity]}$$

$$a \equiv b \pmod{n} \text{ IFF } b \equiv a \pmod{n} \text{ [reflexivity]}$$

$$(a \equiv b \pmod{n} \text{ AND } b \equiv c \pmod{n}) \text{ IMPLIES } a \equiv c \pmod{n} \text{ [transturity]}$$
Let $R \subseteq A \times A$.

Def : R is reflexive if $A \subseteq A$. $A \subseteq A$. $A \subseteq A$.

 $A \subseteq A \subseteq$