LECTURE 16: DIRECTED GRAPHS

Date: October 7, 2019.

Directed Graphs. G consists of nonempty set V(G) of vertices (or nodes) and a set E(G) of edges.
Here E(G) € V(G) x V(G). An edge (u,v) has source/tail u and target/head v. A directed graph
G = (V(G), E(G)) is also called a digraph.
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Proposition 1. For any graph G, ZveV(G‘) indeg(v) = E'vEV(G) outdeg(v). = i £ Cel“

Walks. A walk is an alternating sequence of vertices and edges that begins with a vertex, ends with a
vertex, and such that for every edge (u,v) in the walk, u is the element just before the edge, and v is the
element just after the edge in the sequence. So it is of the form

fUO(’UOJ Ul)vl{vla 'UZ) e (kalyyk)vk'

The walk is said to start in vy and end in vy, and is of length k.

Simplification. A walk is completely determined by just the (sub-)sequence of vertices or the (sub-)sequence
of edges. So we will just use that when convenient.

Paths. Is a walk, where each vertex in the sequence is distinct.

Closed Walk. Is a walk that starts and ends in the same vertex.

Cycle. Is a closed walk of length > 0 where all vertices except the first and last vertex are distinct.
Combining walks. If a walk f ends in vertex v and a walk g starts at the same vertex v, then they can be
merged to get a longer walk. We will denote the merged walk by f~g. Sometimes to emphasize the vertex

where the walks merge, we will denote this by fog.

Note, that |f ~g| = |f] + |g].
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Theorem 2. 4 shoﬂ&%ﬁk between two vertices is a path.

Svppc § &) r&,mu\&dw Wtakf@{}‘ ( conbindnelrin)

P2 o ByBz . lveidn £s A Y
Collnadricds gwn oo Locn thod "F%w‘ffu g\zwwwr W ’

Distance. dist(u,v) is length of a shobtest path from u to v
Proposition 3. For any graph G and vertices u,v,w € V(G), dist(u, w) < dist(u,v) + dist(v, w).
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Adjacency Matrix. A graph G with V(G) = {vo,v1,...vn_1} can be represented by a matrix Ag
where(Ag)i; = 1 if (v;,v;) € E(G) and is 0 otherwise.

Length k-walk counting matrix. For graph G with vertices {vo,v1,...vn_1}, a length k walk countmg
matrix is a n X n matrix C such that Ci; = number of length k walks from v; to v, T, ML’ n\yJDt j

Theorem 4. If C is a length k walk counting matriz, and D is a length m walk counting matriz, then CD
is a length k +m walk counting matriz.
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