Lecture 17: Directed Acyclic Graphs (DAGs) and Partial Orders

Date: October 9, 2019.

Recap

- A digraph G consists of nonempty set V(G) of vertices (or nodes) and a set E(G) of edges.
- A walk is an alternating sequence of vertices and edges that begins with a vertex, ends with a vertex, and such that for every edge (u, v) in the walk, u is the element just before the edge, and v is the element just after the edge in the sequence.
- A paths is a walk, where each vertex in the sequence is distinct.
- A closed walk is a walk that starts and ends in the same vertex.
- A cycle is a closed walk of length > 0 where all vertices except the first and last vertex are distinct.
- A graph G with $V(G) = \{v_0, v_1, \dots v_{n-1}\}$ can be represented by a matrix A_G where $(A_G)_{ij} = 1$ if $(v_i, v_j) \in E(G)$ and is 0 otherwise.

Walk Relations. For a digraph G = (V(G), E(G)), we define a couple of binary relations on V(G) - a walk relation G^* , and a positive walk relation G^+ . These are defined as follows.

(u, v) $\in G^*$ IFF there is a walk from u to v(u, v) $\in G^+$ IFF there is a walk of length > 0 from u to v(u, v) $\in G^+$ IFF there is a walk of length > 0 from u to v(u, v) $\in G^+$ IFF there is a walk of length > 0 from u to v(u, v) $\in G^+$ IFF there is a walk of length > 0 from u to v(u, v) $\in G^+$ IFF there is a walk from u to v(u, v)

Recap about Relations

- $R \subseteq A \times A$ is reflexive iff for all $a \in A$, $(a, a) \in R$.
- $R \subseteq A \times A$ is symmetric iff for all $a, b \in A$, $(a, b) \in R$ IMPLIES $(b, a) \in R$.
- $R \subseteq A \times A$ is transitive iff for all $a, b, c \in A$, $((a, b) \in R \text{ AND } (b, c) \in R)$ IMPLIES $(a, c) \in R$.

Proposition 3. For a digraph G, the relations G^+ and G^* are transitive.

Irreflexive. $R \subseteq A \times A$ is irreflexive iff for every $a \in A$, $(a, a) \notin R$.

Example: Which of the following relations on \mathbb{N} is irreflexive? (a) $R = \emptyset$ \mathcal{I} (b) $R = \{(0,0)\}$ \times (c) $R = \mathbb{N} \times \mathbb{N}$

Proposition 4. If G is a DAG then G^+ is irreflexive.

Assume for contradiction G^+ is not verifying (and G is DAG). $\exists V S.t (V, V) \in G^+$ Strict Partial Orders. A relation $\prec A \times A$ that is transitive and irreflexive.

Examples: Standard ordering on natural numbers. < - strict P.O. (strict) Subset ordering on sets. A \neq B \neq B \Rightarrow A \neq B \Rightarrow A \neq B \Rightarrow A \neq B \Rightarrow A \neq B \Rightarrow Construct P.O.

Theorem 5. A relation R is a strict partial order iff R is the positive walk relation for from DAG. (\Leftarrow) R \Rightarrow G⁺ for som DAG G. Thun G⁺ is strict P.O.

Asymmetric. $R \subseteq A \times A$ is asymmetric iff for every $a, b \in A$, $(a, b) \in R$ IMPLIES $(b, a) \notin R$.

Proposition 6. If R is a strict partial order then it is asymmetric.

Assume Ris a strict forhol order.

Assume (for contradiction) that R is not a symmetric.

Then I (a,b) s.t (a,b) ER and (b,a) ER.

Since R is Transitive "this means (a,a) ER.

But R is irreflexive Contradiction.

Antisymmetric. $R \subseteq A \times A$ is antisymmetric iff for all a, b such that $a \neq b$, $(a, b) \in R$ IMPLIES $(b, a) \notin R$. (Weak) Partial Order. $\leq A \times A$ is a partial order on A iff it is reflexive, transitive, and antisymmetric. Theorem 7. R is a partial order iff it is the walk relation of a DAG.