LECTURE 19; SUBGRAPHS AND CONNECTIVITY

Date: October 16, 2019.

Isomorphism

Definition. An isomorphism between graphs G and H is a bijection f : V(G) — V(H) such that
{v,v} € E(G) IFF {f(u), f(v)} € E(H).

G and H are said to isomorphic if there is (some) isomorphism between G and H.
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Degree Sequence of a graph G is a listing of the degrees of the vertices of G in ascending order.

Proposition 1. If G and H are isomorphic then they have the same degree sequence.
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Subgraphs. G is a subgraph of H iff V(G) C V(H) and E(G) C E(H).

Proposition 2. Let G and H be isomorphic graphs. If S is a subgraph of G then there is a graph T such
that T is a subgraph of H such that S and T are isomorphic.
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Walks, Paths, and Cycles

Walk in graph G is an alternating sequence of vertices and edges that begins with a vertex, ends with a
vertex, and for any edge e = {u, v} in the walk, one of its endpoints is just before ¢ in the sequence and the
other endpoint is just after e.

Walk is of the form vg{vg, v1 }vi{vi, ve}ve - - {vp_1, vx }vk
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Path is a walk such that all vertices appearing in it are distinct. “ zm,bf btb"c S - / ek ol
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Cycle is a closed walk of length > 2 such that all vertices are distinct except the first and the last.

The length of a walk is the number of edges in it.



Connectivity. Vertices v and v are connected in graph G if there is a path that starts in u and ends in
v. We denote this by conn{u,v). A graph G is connected if every pair of vertices are connected.

Proposition 3. conn is an equivalence relation.
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Connected Components. Equwalence classes of conn are the connected components of a graph G.
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Special Walks and Tours

Eulerian Tour of G is a closed walk that includes every edge exactly once.

Theorem 4. A connected graph has an Fulerian tour if and only if every vertex has an even degree.

Hamiltonian Cycle of G is a cycle that visits every vertex in G exactly once.



