LECTURE 19: SUBGRAPHS AND CONNECTIVITY

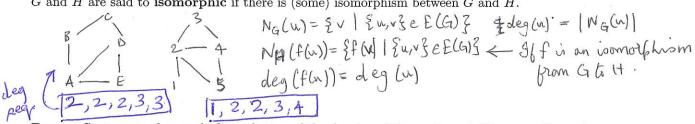
Date: October 16, 2019.

Isomorphism

Definition. An isomorphism between graphs G and H is a bijection $f:V(G)\to V(H)$ such that

$$\{u, v\} \in E(G) \text{ IFF } \{f(u), f(v)\} \in E(H).$$

G and H are said to **isomorphic** if there is (some) isomorphism between G and H.



Degree Sequence of a graph \overline{G} is a listing of the degrees of the vertices of G in ascending order.

Proposition 1. If G and H are isomorphic then they have the same degree sequence.

$$C - d$$
 $2 - 3$ Not isomorphic because no Δ in the $A - b$ e $1 - 4 - 5$ $V(H) = \{a, b, c, d, e\}$ $\{c, d\}$, $\{d, e\}$, $\{c, d\}$, $\{d, e\}$, $\{c, d\}$, $\{d, e\}$, $\{d$

Subgraphs. G is a subgraph of H iff $V(G) \subseteq V(H)$ and $E(G) \subseteq E(H)$.

Proposition 2. Let G and H be isomorphic graphs. If S is a subgraph of G then there is a graph T such that T is a subgraph of H such that S and T are isomorphic. \exists byective $f: V(G) = V(H) \subseteq f$ is an isomorphism. Suppose S = (V(S), E(S)) is a subgraph $G = (\{f(u) \mid u \in V(S)\}, \{\{f(u), f(v)\}\}, \{\{u, v\} \in f(S)\} = f(T))$

Walks, Paths, and Cycles

Walk in graph G is an alternating sequence of vertices and edges that begins with a vertex, ends with a vertex, and for any edge $e = \{u, v\}$ in the walk, one of its endpoints is just before e in the sequence and the other endpoint is just after e.

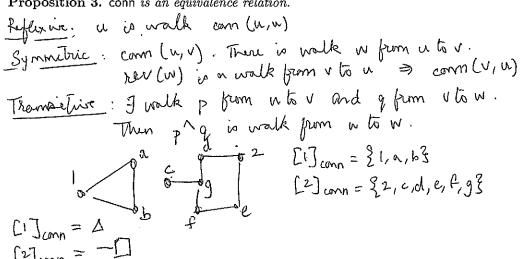
Walk is of the form $v_0\{v_0, v_1\}v_1\{v_1, v_2\}v_2\cdots\{v_{k-1}, v_k\}v_k$. walk a 2 a b 3 b 2 b, c 3 c 2 c, e 3 e 2 e, d 3 d 3 d, c 3 c The length of a walk is the number of edges in it. Path is a walk such that all vertices appearing in it are distinct.

you

Closed Walk is a walk that begins and ends in the same vertex.

Cycle is a closed walk of length > 2 such that all vertices are distinct except the first and the last. Connectivity. Vertices u and v are connected in graph G if there is a path that starts in u and ends in v. We denote this by conn(u, v). A graph G is connected if every pair of vertices are connected.

Proposition 3. conn is an equivalence relation.



Connected Components. Equivalence classes of conn are the connected components of a graph G. G is connected \Rightarrow G has one connected component. Special Walks and Tours

Eulerian Tour of G is a closed walk that includes every edge exactly once.

Theorem 4. A connected graph has an Eulerian tour if and only if every vertex has an even degree.

Hamiltonian Cycle of G is a cycle that visits every vertex in G exactly once.