Lecture 20: Trees

Date: October 21, 2019.

Trees

(Rooted) Trees

In computer science, there are (at least) two things that people refer to as trees.¹ A free (or unrooted) tree is a connected undirected acyclic graph. English German Czech Ruccian Proposition 1. Suppose a graph has a closed walk of length > 2. Then the walk contains a cycle. **Theorem 1.** For any two vertices in a free tree, there is exactly one path connecting them. Let u, v be two vertices in a tree T. Because T is a connected graph, there is at least one path connected a u and v. We need to show there is at most one path. Assume there are at least two paths. Follow one of them from u to v and the other one back. This is closed walk. Proposition 2. If a free tree has at least two vertices, then it contains at least two vertices with degree one.

Theorem 2. A free tree with a vertice of the parties of the path of the Theorem 2. A free tree with n vertices has n-1 edges.

That the That has n vertices, then That n-1 edges. Base Care: n=1. A single vertex w/ no edges. H vertous=1, # edges=0. Induction Hypotheris: Assume P(i), ..., P(n-1), for n>1.

Induction Step: Prove P(n). By Proposition 2, I can delete a vertex of degree 1 and its corresponding edge. The result is a tree with n-1 vertices. By P(n-1), it has n-2 edges. Add back es the deleted vertex of edge, we have n-1 edges.

A (rooted) tree is a free tree with a special vertex designated as the root.

Decision Tree Test 1 + octive?

When two vertices are neighbors, the one closer to the root is the parent, and the one farther away is the children. Children of the same parent are called siblings. A vertex with no children is a leaf, otherwise It is an internal node (or internal vertex). For a vertex v, vertices on the path from v to the root are ancestors. Vertices that have v as an ancestor are the descendants of v. Given a vertex a in a tree,

¹Caveat lector: different people have different conventions for what a "tree" with no adjectives refers to.

the subtree rooted at a is the tree consisting of a (as the root), all of a's descendants, and all the edges between these vertices.

The vertices of a rooted tree can be divided into levels. The <u>level</u> of a vertex is the length of the unique path to the root. The **height** of a tree is the level of any leaf.

A rooted tree is an *m*-ary tree if every internal vertex has at most *m* children. A *m*-ary tree is full if every internal vertex has exactly *m* children.

Recursive Definition of and Induction on (Rooted) Trees

Base Case. A single vertex is a (rooted) tree.

Constructor Case. Suppose T_1, \ldots, T_k are rooted trees with roots r_1, \ldots, r_k such that $\bigcap_{i=1}^k V(T_i) = \emptyset$. Then the graph formed by taking a root r (that is not a vertex in T_1, \ldots, T_k) and adding an edge from r to each of r_1, \ldots, r_k is a tree.

Theorem 3. For $m \ge 2$, if T is an m-ary tree with height h, then T has at most $m^{h+1}-1$ vertices. By P(T): if T is m-ary w/ height h, then $|V(T)| \le m^{h+1}-1$. Base Case: Single vertex has height 0.

IH: Assume $P(T_1)\cdots P(T_k)$ where $k \leq m$ and $\bigcap_{i=1}^{k} V(T_i) = \emptyset$.

The second by making the roots of $T_1\cdots T_k$ the children of a new root r. Let $h_i \cdots h_{ik}$ be the heights of then $|V(T_i)| = 1 + |V(T_i)| + \cdots + |V(T_k)| = 1 + |V(T_i)| + \cdots + |V(T_k)| = 1 + |V(T_i)| + \cdots + |V(T_k)| = 1 + |V(T_k)| = 1 + |V(T_k)| + \cdots + |V(T_k)$

Corollary 1. For $m \ge 2$, if T is an m-ary tree with n vertices, then its height is at least $\log_m(n+1) - 1$.

Proposition 3. Consider the family of trees of height at least two whose vertices are colored either orange or blue. If all leaves in a tree are colored blue and the root is colored orange, then there exists an internal node that is colored orange that has a child that is colored blue.