LECTURE 3: PROPOSITIONAL AND FIRST ORDER LOGIC

Date: August 30, 2019.

PIMPLIEQ = NOT (P) OR Q=

Recap:

	NOT (Q) IMPLIES (NOT(P) = NOT(NOT(Q)) OR NOT(P) = Q OR NOT(P)
	• A proposition is a statement that is either true or false. ΝΟΤ (P) Ο R Q
	• If P and Q are propositions, then so are $NOT(P)$, P AND Q , P OR Q , P IMPLIES Q , and P IFF Q . The meaning of these combined propositions is given using a truth table. (FINALES Q) AND
	• Two expressions are logically equivalent if they evaluate to the same truth value in all situations, i.e., in every row of the truth table they take the same value.
	• The contrapostive of an implication P IMPLIES Q is $(NOT(Q))$ IMPLIES $(NOT(P))$. The contrapositive is logically equivalent to the implication.
	• The converse of an implication P IMPLIES $Q \not\equiv Q$ IMPLIES P . The converse is not logically equivalent to the implication.
No	(P IMPLIE a) = NOT (NOT (P) OR a) = NOT (NOT (P)) AND NOT(D) = P AND NOT (a) Useful Logical Equivalences logically equivalent or "man the same"
DE MORGI LAWS	$ \begin{array}{l} NOT(NOT(P)) \equiv P \\ NOT(P \ OR \ Q) \equiv (NOT(P)) \ AND \ (NOT(Q)) \\ NOT(P \ AND \ Q) \equiv (NOT(P)) \ OR \ (NOT(Q)) \\ NOT(P \ IMPLIES \ Q) \equiv P \ AND \ (NOT(Q)) \\ P \ OR \ (Q \ AND \ R) \equiv (P \ OR \ Q) \ OR \ R \\ P \ OR \ (Q \ OR \ R) \equiv (P \ OR \ Q) \ OR \ R \\ P \ AND \ (Q \ OR \ R) \equiv (P \ AND \ Q) \ OR \ (P \ AND \ R) \\ P \ AND \ (Q \ OR \ R) \equiv (P \ AND \ Q) \ OR \ (P \ AND \ R) \\ \end{array} $
	Question 1. 1. What is T OR P ? Is it (a) T, (b) F, or (c) P ? P α R $P \rightarrow (\alpha \rightarrow R)$ $(P \rightarrow \alpha) \rightarrow R$ 2. What is F OR P ? Is it (a) T, (b) F, or (c) P ? F F T T F
	2. What is F OR P? Is it (a) T, (b) F, or (c) P?
	3. What is T AND <i>P</i> ? Is it (a) T, (b) F, or (c) <i>P</i> ?
	4. What is F AND P? Is it (a) T, (b) F, or (c) P?
	\rightarrow 5. Are P IMPLIES (Q IMPLIES R) and (P IMPLIES Q) IMPLIES R equivalent? NOT EG.
	Definition 1. A formula is valid if it is always true, no matter what truth values are assigned to the variables.
	A formula is satisfiable if there is some truth assignment to the variables under which it evaluates to true.
	Question 2. For each of the following expressions, determine if it is satisfiable or valid. TORF (a) P OR Q , (b) P OR (NOT(P)), (c) P AND (NOT(P)). NEITHER' SAT OR VALID SAT Z VALID
	Question 3. Is the following statement true? If an expression φ is satisfiable then φ is valid. F If φ is valid then φ is φ is fable Question 4. Suppose φ is valid. Then $NOT(\varphi)$ is (a) satisfiable, (b) valid, (c) not satisfiable.
	q is SAT NOT (Q) 96 Cl is SAT then NOT (G) is not
	POR DOT (P) POR Q 1 Valid

Given expression φ , ist φ satisfiable

Building a truth table for φ It is defended in variables then truth table has 2^n QUESTION: Is—three a better algorithm? $P \stackrel{?}{=} NP$