LECTURE 30: PIGEONHOLE PRINCIPLE

Date: November 15, 2019.

Subset Split Rule/Multinomial Coefficient. The expression
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is the number of ways

e of forming m distinct subsets of sizes k, kg, ... km (respectively) out of a set of (kr +ko+ oo + km)
elements;

¢ of the number of sequences formed from {1,2,...lm, where the sequence has k; copies of Iy, ko copies
of la, ... ky copies of L, in the sequence. B O KLPR M Roow ve
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Binomial Theorem. (z +y)* = 37 (Mzly™t.

Problem 1. What is the coefficient of be3k20%pr in the expansion of (b+e+k-+o+p+r)i0?
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Pigeonhole Principle. If |A| > |B| then for every function f : 4 -+ B, there exist distinct a,b € A such

that fla) = F®) L7y =Saen] £0=bF 1 bitb,, Q“Cb,)n;-'(%);}g 1= UFI(b)

Problem 2. Let § be any n-element set of integers. There are a,b € S such that wviaver by LeE
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Problem 3. A chess player trains for a championship by playing practice games over 77 days. She plays at
least one game on any day, and plays a total of at most 132 games. Prove that no matter what her schedule
of games looks like, there is a period of consecutive days in which she plays exactly 21 games.

iy === :'t?—ﬂaw 2;[;;@&0& onc[mva L« C“hw)

| € <Az <agd - - Sagg L1382

NL " 2  ty+ 21 c o LRt £ |53

{%% v Ry, M2, 02y Ll gtz §
154

Bj fuéum W/JL\J\M}&% Eff.,'a, P»L'“—'é‘tl‘
waj g2 oo b she };W 2| Fobndar-

Generalized Pigeonhole Principle. Let B = {b1,bs,...b,}. Let ¢1,q2,...g, € N be such that |4| >
q1+ g2+ -+ + gn. For any function f: A — B, for some ¢, |{a € A| f(a) = b;}| > q..
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¢ If [A| > k|B| then for every function f : A — B, there are k + 1 distinct elements of A ay,aa,...a541
such that for every i,7, f(a;) = f(a;).

Problem 4. 1. How many cards should you pick from a standard deck of 52 cards to guarantee that at
least 3 cards of the same suit are chosen? ¢ j__'l =R
A :

2. How many cards should you pick from a standard deck of 52 cards to guarant=e that at least 3 cards
from the “Hearts” suit are picked? 4o

Subsequence. For a sequence ay,as,...a,, a subsequence is a sequence of the form iy, Gy, - - - G, Where
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Theorem 1 (Erdés-Szekeres). Any sequence of n? 41 distinct real numbers contains a subsequence of length
at least n+ 1 that is either increasing or decreasing.



