Lecture 32: Probability

Date: November 20, 2019.

Problem 1. Suppose we roll a (fair) black die and a (fair) white die. What is the probability that they sum to 7 or 11?

Outcomes =
$$\frac{2}{3}(i,j)$$
 | $i \in 21,2,...63$, $j \in 21,2...63$ } $\frac{2}{3}(1,1),(1,2),(1,3)(1,4),(1,5)(1,6)}{(2,1),(2,2)}$
Pr(i,j) = $\frac{1}{6}$. $\frac{1}{6} = \frac{1}{36}$
Pr[$ixthur 7 or 11$] = $Rr[1,6] + Pr[2,5] + R[3,A] + R[4,3][\frac{5}{6},2]$
 $Rr[6,5] + Pr[6,1] + Pr[5,1] + Rr[6,5]$
= $\frac{8}{36} = \frac{2}{9}$

Probability Spaces. Consists of

Sample Space, a set S of possible outcomes of an experiment

Probability Distribution, a function $Pr: S \to [0,1]$ that assigns a positive real weight proportion or probability to each outcome such that $\sum_{x \in S} \Pr[x] = 1$.

An event $E \subseteq S$ is a subset of outcomes. The probability of an event E is $\Pr[E] = \sum_{x \in E} \Pr[x]$.

Problem 2. Suppose a biased coin, whose probability of showing heads is q, is tossed 30 times. What is

Troblem 2. Suppose a bissed coin, whose probability of seeing 15 heads?

Sample space =
$$\mathcal{E}$$
 H, \mathcal{T} \mathcal{E} = \mathcal{E} H H \mathcal{T} TH \mathcal{E} - . H

Problem 2. Suppose a bissed coin, whose probability of showing heads is \mathcal{E} , is cossed so times. What is the probability of seeing 15 heads?

Sample space = \mathcal{E} H, \mathcal{T} \mathcal{E} = \mathcal{E} H H \mathcal{T} TH \mathcal{E} - . H

HHT

$$\begin{array}{c}
\mathcal{E} \\
\mathcal{E$$

$$=\frac{1}{1SI}$$

A probability space is said to be uniform if $\Pr[x] = \Pr[y]$ for all outcomes x, y. Then $\Pr[E] = \frac{|E|}{|S|}$.

Problem 3. In a class containing 95 students, what is the probability that two people share the same birthday? Assume that all possible birthdays are equally likely.

Birthdays = 1..366

Somple Space =
$$S = £1, ..366£^{95}$$
. $|S| = (366)^{95}$
 $Pr(C) = \frac{1}{(366)^{95}}$.

 $E = £ C | ∃i, j | C(i) = C(j) £$
 $|E| = 366 \times 365 \times 364 \times ... \times 271 = \frac{2711}{2711}$

Pr(Notivo Share the same birthday) = $\frac{366 \times 365 \times ... (366 - n)}{366 \times 366 \times ... 366}$

= $\frac{366}{366} \left[\frac{366-1}{366} \right] ... \left[\frac{366-n}{366} \right]$

= $\left[\frac{366-1}{366} \right] \frac{366-1}{366} ... \left[\frac{366-n}{366} \right]$

Pr(Two perfle share] = $\left[-\frac{1}{200,000} \right] = 0.999999$

Probability Rules from Set Theory.

• Sum Rule. If $E_1, E_2, \dots E_n$ are pairwise disjoint sets, then

$$\Pr[\bigcup_{i=1}^n E_i] = \sum_{i=1}^n \Pr[E_i]$$

- Complement Rule. $Pr[\overline{A}] = 1 Pr[A]$.
- Difference Rule. $Pr[B-A] = Pr[B] Pr[A \cap B]$
- Inclusion-Exclusion Rule. $Pr[A \cup B] = Pr[A] + Pr[B] Pr[A \cap B]$.
- Boole's Inequality. $Pr[A \cup B] \leq Pr[A] + Pr[B]$.
- Monotonicity Rule. If $A \subseteq B$ then $Pr[A] \le Pr[B]$