Lecture 7: Sets

Date: September 11, 2019.

Set: An unordered collection of objects.

$$\begin{array}{lll} \emptyset = \{\} & \text{empty set} & \mathbb{N} = \{0,2,4,6\} \\ A = \{0,2,4,6\} & \mathbb{Z} = \{0,-1,1,-2,2,\dots\} \\ B = \{B,C,D,E,F,J,K,P,Q,R,S,T,V\} & \mathbb{Q} = \text{Rationals} \\ C = \{\{0\},\{2\},\{4\},\{6\}\} & \mathbb{R} = \text{Rationals} \\ D = \{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\} & \mathbb{C} = \text{complex numbers} \end{array}$$

Membership: A set is defined by its members. $x \in A$ means "x is a member of A".

Question 1. Which of the following are true?

1. (a)
$$0 \in \emptyset$$
, (b) $\emptyset \in \emptyset$, (c) $A \in \emptyset$? All we false

2. (a)
$$0 \in A$$
, (b) $\{0\} \in A$, (c) $\emptyset \in A$?

3. (a)
$$0 \in C$$
, (b) $(0) \in C$ (c) $\{\{0\}\} \in C$?

4. (a)
$$\emptyset \in D$$
, (b) $\{\emptyset\} \in D$ (c) $\{\underline{\{\emptyset\}\}} \in D$? $\{\emptyset\} \notin D$?

Containment: $A \subseteq B$ (A is contained in B) iff $\forall x[x \in A \text{ IMPLIES } x \in B]$. $A \subseteq B$ means $A \subseteq B$

Question 2. Which of the following are true?

Stion 2. Which of the following are true?

$$0 \subseteq 0 \top$$
 $0 \subseteq \mathbb{N}$ \top \to $\frac{\operatorname{Prop}}{\operatorname{Prop}}$. For any set X , $\emptyset \subseteq X$.

 $\mathbb{N} \subseteq \mathbb{N}$ \top Picking any x . $x \notin \emptyset$. So Propholds vaccountly.

 $C \subseteq A \vdash A \subseteq C \vdash$ Pick any set X , $X \subseteq X$

Pick any set. Assume see X : So propholds

Set Builder Notation: $\{x \in A \mid P(x)\}$ defines the set of elements in A such that P(x) is true.

$$E = \{ n \in \mathbb{N} \mid n \text{ is even} \} = \{ n \in \mathbb{N} \mid \exists k \in \mathbb{N} (n = 2k) \}$$
$$F = \{ x \in \mathbb{R} \mid \exists a, b \in \mathbb{Z} (b \neq 0) \text{ AND } (x = \frac{a}{b}) \} = \mathbb{Q}$$

OR: V AND: A

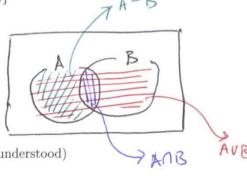
Set Operations: Let X and Y be sets.

$$X \cup Y = \{x \mid (x \in X) \text{ OR } (x \in Y)\}$$

$$X \cap Y = \{x \mid (x \in X) \text{ AND } (x \in Y)\}$$

$$X - Y = \{x \mid (x \in X) \text{ AND } (x \notin Y)\}$$

 $\overline{X} = U - X$, where U is the "universal set/domain of discourse" (when understood)



Question 3. What is

Cartesian Product: $X \times Y$ consists of all ordered pairs (x, y) where $x \in X$ and $y \in Y$, i.e., $X \times Y = \{(x, y) \mid (x \in X) \text{ AND } (y \in Y)\}.$

Example 1. $\{0,1,2\} \times \{a,b,c\} = \{(0,\alpha),(0,b),(0,c),(1,\alpha),(1,b),(1,c),(2,\alpha),(2,b),(2,c)\}$ $\{a,b,c\} \times \{0,1,2\} = \{(a,0),(a,1),(a,2),(b,0),(b,1),(b,2),(c,0),(c,1),(2,2)\}$ $\emptyset \times D = A \times C = \{(a,0),(a,1),(a,2),(b,0),(b,1),(b,2),(c,0),(c,1),(c,2)\}$

Set Equality: Two sets X and Y are equal if they have the same elements, i.e., for every $x, x \in X$ IFF $x \in Y$, i.e., $X \subseteq Y$ AND $Y \subseteq X$.

Problem 1. Prove that for any sets X, Y, Z,

$$X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z).$$

Cardinality (of finite sets): |X| = number of elements in X.

Example 2.
$$|\emptyset| = |A| = |D| = |\{0, 1, 1, 2, 2\}| = |A \times B| = |A|$$