LECTURE 7: SETS

Date: September 11, 2019.

Set: An unordered collection of objects.
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Membership: A set is defined by its members. r € A means “z is a member of A”.

Question 1. Which of the following are true?
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Question 2. Which of the following are true? &—/_\
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Set Builder Notation: {x € A | P(z)} defines the set of elements in A such that P(z) is true.
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Set Operations: Let X and Y be sets.
XUY={z|(zeX)OR (z€Y)}
XNY={z|(zeX)AND (zxeY)}
X-Y={z|(zeX)AND (z¢4Y)} ,
X = U — X, where U is the “universal set/domain of discourse” (when understood) \_; AN R AVR

Question 3. What is
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Cartesian Product: X x Y consists of all ordered pairs (z,y) where z € X and y € V, ie.,, X x Y =
{(z,y) | (z € X) AND (y € Y)}.

Example 1. {0,1,2} x {a,b,c} = {(_0 LN (\,, k), Cb,c.) (,i e\, (1 L) Cl c) (7—;0\) &,b‘) (20]
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Power Set: pow(X) = {Y |Y C X} ¥ (_\A .

Quest10n4 po 0,1,2}) = 7§, %ai {18,328, 70,18, fo 28, 11,2%, J0,1,28%
pow(0) is (a } (c) {@ () ) not defined.

pow({0}) is (a) 0, d) not defined.

Set Equality: Two sets X and Y are equal if they have the same elements, i.e., for every x, v € X IFF
zeY,ie, XCYANDY C X.

Problem 1. Prove that for any sets X,Y, Z,

Xn(Yuz)=(XnY)u(Xn2).

Cardinality (of finite sets): |X| = number of elements in X.

Example 2. |} = |A] = |D| = 1{0,1,1,2,2}| =
|Ax B| =



