Lecture 8: Functions, Binary Relations, and Cardinality

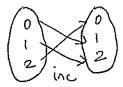
Date: September 13, 2019.

Functions: A function $f:A\to B$ assigns to an element of one set the domain (in this case A), an element from another set the codomain (in this case B). | partial for $f: A \hookrightarrow B$

Example 1. inc: $\{0,1,2\} \to \{0,1,2\}$ where inc(0) = 1, inc(1) = 2, and inc(2) = 0.

 $dbl: \mathbb{N} \to \mathbb{N}$ where dbl(n) = 2n.

twoinc: $\mathbb{Z} \to \mathbb{Z}$ where twoinc(x) = x + 2. In two in $c: \mathbb{N} \to \mathbb{N}$. sq: $\mathbb{R} \to \mathbb{R}$ where $\operatorname{sq}(x) = x^2$.



Evaluation on Sets: Given a function $f: A \to B$ and $S \subseteq A$, $f(S) = \{f(n) \mid n \in S\} \subseteq B$.

Example 2. $\operatorname{inc}(\{0,1\}) = \{1, 2\}$ $\operatorname{dbl}(\mathbb{N}) = \{1, 1, 2\}$ $\operatorname{ord} n \in \mathbb{N}$ Range: The range of $f: A \to B$ is the set f(A). $\operatorname{hemge}(f) \subseteq B$ Who $\operatorname{dec}(n) = n-2$ $\operatorname{two dec}(n) = n-2$

Surjective/Onto: $f: A \to B$ is surjective/onto if range(f) = f(A) = B = codomain(f), i.e.,

$$\forall y \in B \ \exists x \in A(f(x) = y)$$

Question 1. Which of the following functions is surjective? ((a) inc, (b) dbl, (c) twoinc, (d) sq $\operatorname{inc}(20,1,23) = 21,2,03 = \operatorname{codemain}(\operatorname{inc})$ $\operatorname{range}(sq) = 2 \times \operatorname{col}(R) \times \operatorname{ro}3$

Injective/1-to-1: $f: A \to B$ is injective/1-to-1 if distinct elements get mapped to distinct elements, i.e.,

$$\forall x \in A \ \forall y \in A((x \neq y) \ \mathsf{IMPLIES} \ (f(x) \neq f(y)))$$

-> contrapositive: txEA tyEA. f(x) = f(y) INVPLIES x = y

Question 2. Which of the following functions is injective? (a) inc) (b) dbl) (c) twoinc) (d) sq let x, y be rebittery elements s.t dbl(n) = dbl(y) => 2x = 2y => x=y

Composition: For functions $f:A\to B$ and $g:B\to C$, the composition $g\circ f$ is the function $A\to C$ defined as $(g \circ f)(x) = g(f(x))$, for all $x \in A$.

Problem 1. If $f: A \to B$ and $g: B \to C$ are injective then $g \circ f$ is injective.

(onsider x,y &A. Assume $g(f(x)) = g \circ f(x) = g \circ f(y) = g(f(y))$ g is 1-to-1: $\Rightarrow f(x) = f(y)$ f is lets-1: $\Rightarrow x = y$ frand

Proposition 1. If $f: A \to B$, $g: B \to C$, and g is surjective then $g \circ f$ is surjective.

Bijective: A function that is injective/1-to-1 and surjective/onto.

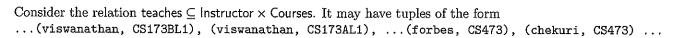
REA, XA2XA3X. Am = ¿Ca, a2. on | Hini & Ai 3

Binary Relation: $R \subseteq A \times B$, where A is the domain, and B is the codomain.

Notation: $(a,b) \in R$ or aRb or R(a,b)

Example 3. For any function $f: A \to B$, graph $(f) = \{(x, f(x)) \mid x \in A\}$.

"less than" is a binary relation from $\mathbb R$ to $\mathbb R$.



Cardinality (of finite sets): |X| = number of elements in X.

Example 4.
$$|\emptyset| = |\{0,1,2,3\}| = |\{\mathbb{N},\mathbb{Z},\mathbb{Q},\mathbb{R}\}| = |\{0,1,1,2,2\}| = |\{0,1,2\} \times \{a,b,c\}| = |\{0,1,2,3\}| = |\{0$$

Proposition 2. The following statements hold for finite sets A and B.

- 1. If there is a surjective function $f: A \to B$ then $|A| \ge |B|$.
- 2. If there is a injective function $f: A \to B$ then $|A| \le |B|$.
- 3. If there is a bijective function $f: A \to B$ then |A| = |B|.

Proposition 3. For a set A such that |A| = n, $|pow(A)| = 2^n$.