LECTURE 8: FINITE CARDINALITY AND INDUCTION

Date: September 18, 2019.

Sequences on A: Ordered list of elements from A.

e Length two sequences (aj,as), i.e., pairs, i.e., element of A x A

e Length n sequences (a1,a2,...an) € Ax Ax--- A
A]'%A}-‘f\- . An = EC&\,,G\L. . dn)] i . A, & ﬂ{,%
Bijective Functions:
e f:A— B is surjective/onto if range(f) = f(A) = B = codomain(f).

e f:A— B is injective/1-to-1 if distinct elements get mapped to distinct elements.

e A function is bijective if it is injective/1-to-1 and surjective/onto.

Cardinality. (of finite sets): |X| = number of elemints in X.
Example 1. [0 = ¢ [{0,1,2,3} = 4 |{I< Z,Q,R} =4 1[{0,1,1,2,2}| =3

[{0,1,2F x {a,be} = |sequences of length n over {0,1, 2}| ZIEbr‘f?-?_\X:iGr‘i;ng. o EO/H?—E\
= iiCc,o\)/,@,b}g:(p/c) - -31=9 o~ y
DA R et [Al=n, [Bi=m, |A%El=mn = 3%3x3x..3 =7

Proposition 1. The following statements hold for finite sets A and B.
1. If there is a surjective function f: A — B then |4| > |B|.

2. If there is a injective function f: A — B then |A| < |B|.
3. If there is a bijective function f: A — B then |A| = |B|.
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Induction: To prove Vn € N P(n) —: Ploy And P I’rN?) [
Pl2) .

e Prove P(0) [Base Case]
e Prove for all n >0, if P(0) AND P(1) AND ---AND P(n — 1) then P(n) [Induction Step]
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Problem 1. All horses have the same color.

Proof by induction. Predicate P(n): Any set of n-horses has the same color. To prove: Vn € N with n > 1,
P(n)

Base Case: P(1). In any set containing only one horse, all horses (namely the only one) have the same color.
Induction Hypothesis: Assume that P(1), P(2), ... P(n 1) are true.

Induction Step: Consider an arbitrary set H of n + 1 horses.
Let H = {hi, ho, ... I}
Consider Hy = {hy,hy,.. . hp_1} and Hp = {ho,... hn}
Since P(n — 1) holds, all horses in H; have the same color. Also all horses in Hy have the same color.

So color(hy) = color(hg) = color(hs) = -+ = color(hy). Hence all horses in H have the same color.



