Homework on Counting

Benjamin Cosman, Patrick Lin and Mahesh Viswanathan Fall 2020

Problem 1. Given a regular *n*-gon,¹ a *diagonal* or *chord* is a line segment connecting two non-adjacent vertices. For example, all the possible diagonals of a regular square (4-gon) and a regular pentagon (5-gon) are shown in red below.

 1 i.e., a polygon with n sides

What is the total number of possible diagonals in a regular n-gon?

Problem 2. Count the total number of possible undirected graphs on *n* vertices. (Here we are *not* considering two graphs to be the same if they are isomorphic).

Problem 3 (Counting two different ways). In this exercise we will establish some combinatorial identities by counting something two different ways.

- a) We established that the number of paths from (0,0) to (k,n-k) on an integer grid where we only walk rightwards or upwards is $\binom{n}{k}$. Explain how to establish that the number of such paths can also be counted as $\binom{n-1}{k} + \binom{n-1}{k-1}$ to prove "Pascal's formula": $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$. ²
- b) From n contestants, suppose k finalists are picked, out of which ℓ actually win. Explain how to count the ways for this to happen in two different ways to establish the identity $\binom{n}{k}\binom{k}{\ell}=\binom{n}{\ell}\binom{n-\ell}{k-\ell}$.

Problem 4. Consider an election in which thirty people vote for three candidates.

- a) How many voting outcomes are there, if we only care about how many votes each candidate gets?
- b) How many voting outcomes are there, if we care about which candidate each voter voted for?
- c) How many ways can we get a three-way tie between all three candidates (i.e., each candidate receives exactly one-third of the votes)?

Problem 5. Compute the number of *positive* integer solutions³ to the equation $\sum_{i=1}^{n} x_i = k$, where k is some integer constant.⁴

² Hint: each of the valid paths from (0,0) to (k,n-k) have to end in one of two ways.

³ i.e., $x_i > 0$ for all i

⁴ You may assume that $k \ge n$.