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Problem 1. Consider a simplified version of the game of Blackjack.
In this game, a standard 52 card deck is used.1 A set of two cards is 1 See https://en.wikipedia.org/wiki/

Standard_52-card_deck if you need to
remind yourself what the cards in a 52

card deck are.

chosen uniformly at random, and the player wins if the total points
from the two cards is exactly 21, under the following scoring system:
the point-value of each of the number cards (i.e., the cards labeled 2

through 10) is just the number of the card; the Jack, Queen, and King
are each worth 10 points, and the Ace is worth either 1 or 11 points
(player’s choice). What is the probability of the player winning? (You
do not have to simplify your answer.)

Problem 2. Prove the following conditional versions of various Prob-
ability rules:

a) ∑x∈S Pr[x|B] = 1 (S is the entire sample space).

b) For disjoint E1, . . . , En, Pr [
⋃n

i=1 Ei|B] = ∑n
i=1 Pr[Ei|B].

c) Pr[A \ B|C] = Pr[A|C]− Pr[A ∩ B|C].

d) Pr [
⋃n

i=1 Ei|B] ≤ ∑n
i=1 Pr[Ei|B].

e) If A ⊆ B then Pr[A|C] ≤ Pr[B|C].

https://en.wikipedia.org/wiki/Standard_52-card_deck
https://en.wikipedia.org/wiki/Standard_52-card_deck


homework on probability 2

Problem 3. An important task when designing networks is to ensure
that it is robust to random network failures. For example, if a small
failure randomly occurs, ideally the probability that the network be-
comes disconnected should be low.2 While Kn is obviously the most 2 Recall that a graph is connected if

there exists a walk between every pair
of vertices, and disconnected otherwise.

robust against such failures, building connections is expensive, so we
want to get away with significantly fewer edges. In each network and
failure scenario below, what is the probability that the given failure
disconnects the network?

a) The network is shaped like Cn, where n > 3. A set of two edges,
chosen uniformly at random, simultaneously fails.

b) The network is shaped like Wn, where n > 3. A set of two edges,
chosen uniformly at random, simultaneously fails.

c) The network is shaped like Wn, where n > 3. A set of three edges,
chosen uniformly at random, simultaneously fails.

d) The network is shaped like Cn, where n > 3. A set of two vertices,
chosen uniformly at random, simultaneously fails.3 3 Here and below: when a vertex

fails, any links to that vertex become
unusable as well: effectively the vertex
as well as all edges incident to it are
removed from the graph.

e) The network is shaped like Wn, where n > 3. A set of two vertices,
chosen uniformly at random, simultaneously fails.

f) The network is shaped like Wn, where n > 3. A set of three ver-
tices, chosen uniformly at random, simultaneously fails.
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Problem 4. A classic application of Bayes’ rule is that of a (Naïve)
Bayesian Spam Filter for eliminating spam from email.4 In the setup, 4 Modern Spam Filters are based on

much more sophisticated methods, but
it is still nice to see how the concepts
we have learned apply to a rudimentary
version of such a system.

we identify a set G of GoodTM emails (aka not-Spam) and a set B of
BadTM emails (aka Spam). For a given word w, let #G(w) and #B(w)

be the number of in GoodTM and BadTM emails, respectively, that
containt he word w. We will set pG(w) = #G(w)

|G| and pB = #B(w)
|B| , the

(empirical) probabilities of seeing w in a GoodTM or BadTM email,
respectively.

Given a new email, the goal of the Bayesian Spam Filter is to de-
cide, based on the words appearing in the email, whether the email is
Spam or not. The methodology is as follows: Let S be the event that
the email is Spam, and W be the event that the email contains word
w.

a) Assume that Pr[S] = Pr[S] = 1
2 . Show that under this assumption,

Pr[S|W] = Pr[W|S]
Pr[W|S]+Pr[W|S] .

Absent any information, Pr[S] = Pr[S] = 1
2 is a fairly standard prior

to assume. Since pG(w) and pB(w) are empirical estimates of Pr[W|S]
and Pr[W|S], respectively, we can substitute these values in to an
estimate pS(w) of P[S|W] by pS(w) = pB(w)

pG(w)+pB(w)
. We then decide on

a threshold θ and declare that if pS(w) ≥ θ, any email containing w is
marked is BadTM.

b) The University hires a few undergraduate students to classify
sample emails sent to University email addresses as either GoodTM

or BadTM, and then trained a Bayesian Spam Filter based on their
classification. Later, the administration found that the word
MASSMAIL appeared in 25 of 200 emails classified as BadTM, and
only 1 out of 100 emails classified as GoodTM. Obviously, it would
not be good if MASSMAILs sent from the University got sent to stu-
dents’ Spam folders. For what values of θ would such emails be
kept from being flagged as BadTM?


