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Problem 1 (Infinite geometric series). For an infinite sequence
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Prove that for |r| < 1 ar' = .
| | 4 Z 1 —7r
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Problem 2 (Arithmetico-Geometric Series).

n

a) Compute a closed form for 2 ix'. 2 >Hint: Set S = Y, ix’, then compute
i=1 (1—1x)S.
. x
b) Prove that if |x| <1, Z ixt = TRV 3 3 See Problem 1 for the definition of an
i=0 (1 - X ) infinite sum.
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Problem 3 (Rolling down the river). Compute a closed form for the
following recurrence, defined over non-negative numbers.

B ifn e {0,1}
Jm) = Jn-2)+1 ifn>1
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Problem 4 (Reoccuring recurrences). Using the recursion tree method,
compute closed forms for the following recurrences, both of which
are defined over non-negative powers of two (i.e., 2! for i > 0).

. 1 ifn=1
i) B(n) = ,
2B(%) +n otherwise
1 ifn=1
i) C(n) = n

2C(%) +n? otherwise



