
Homework on Algorithm analysis and Big O
Benjamin Cosman, Patrick Lin and Mahesh Viswanathan

Fall 2020

Problem 1. Using the formal definition of big-O, prove that for 0 <

a < b, bn is not O(an).

Problem 2. We can think of big-O as a relation on functions; prove
that this relation is transitive. That is, prove that if f (n) is O(g(n))
and g(n) is O(h(n)) then f (n) is O(h(n)). (Use the formal definition of
big-O directly; do not appeal to general arguments about which functions
must grow faster than which others. If you are stuck, look at worksheet
question 3b for a similar problem (and our solution to it).)

Problem 3. Recall that the Fibonacci sequence 0, 1, 1, 2, 3, 5, ... can be
defined recursively as follows:

fn =

n if n ≤ 1

fn−1 + fn−2 otherwise

You may use without proof1 that it has the following closed form: 1 A hint for if you want to try proving
this: use induction and note that
ϕ2 = ϕ + 1

fn =
ϕn − (1− ϕ)n

√
5

where ϕ is the "golden ratio" 1+
√

5
2 ≈ 1.62. You may also use this

without proof:
n

∑
i=0

fn = fn+2 − 1

Consider the following algorithm, presented in pseudocode, which
computes the fibonacci sequence through a naive recursive method:

Naive Fibonacci

1. fib(n): // n >= 0

2. if n <= 1:

3. return n

3. otherwise:

4. return fib(n-1) + fib(n-2)

a) What is the run time of fib in terms of n? State any assumptions
you make about how long different parts of this algorithm take. 2 2 Hint: come up with a recurrence and

then use unrolling to get a closed form.
Hint 2: Θ(2n) is not a correct answer.b) Come up with a much faster algorithm for this task. What is its

run time?


