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Problem 1. For each of the following sets, determine if it is finite,
infinite but countable, or uncountable. There is no need to prove your
result.

(@) P(Q) where Q is the set of rational numbers
(b) {x e R|x? <0}

(c) {3n|n e N}

(d) {neN|n?=n’}

(e) R

(f) AN B, where A and B are countable sets.

Problem 2. Recall that E = {2n|n € IN} is the set of even natural
numbers. Let Sq = {n? | n € IN} be the set of perfect square natural
numbers. Show that |E| = |Sq| by describing a bijective function
between the sets and proving your function to be bijective.

Problem 3. Prove that D = {(m,n) € Nx N |m < n} and N x N
have the same cardinality.

Problem 4. Recall that the interval (0,1) = {r € R|0 < r < 1}
and [0,1) = {r € R|0 < r < 1}. Prove that |(0,1)| = |[0,1)|. Hint:
It is difficult to find a bijective function between these sets. Use the
Cantor-Schroder-Bernstein Theorem, Proposition 5 from notes, and
Proposition 11 from notes/Problem 3 in worksheet.

Problem 5. Suppose A, B are infinite sets that are countable. Prove
that

(a) A X B is countable. Hint: Consider showing |A x B| = |IN x IN|.

(b) If A and B are disjoint (i.e., AN B = @) then A U B is countable.
Hint: Consider adapting the proof that shows |Z| = |IN]|.

Based on part (b) above and the fact that R are uncountable ', what
can you conclude about the cardinality of the irrational numbers. Is it
countable or uncountable?

Problem 6. Recall that (0,1) = {x € R|0 < x < 1}. Also (0,00) =
{x e R|0 < x}.

(a) Prove that i : (0,00) — (0,1) defined as h(x) = 17 is a bijection.
Thus [(0,1)| = |(0, ).

* This was not proved in class. One
needs to use diagonalization to prove
this.
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(b) Prove that |R| = [(0,1)|. Hint: Can you adapt the bijection in part
(a) to map non-negative numbers to [%, 1) and negative numbers
to (0,3)?



