
Algorithm analysis and Big O
Benjamin Cosman, Patrick Lin and Mahesh Viswanathan

Fall 2020

TAKE-AWAYS

• f (n) is O(g(n)) if there are positive c, k such that for every
n ≥ k, f (n) ≤ c · g(n).

• Informally, f (n) is O(g(n)) if, as long as you ignore small
inputs and constant factors, f (n) ≤ g(n).

• The following simple functions form a strictly increasing
hierarchy for big-O:
1, log(n), n, n log(n), n2, n3, ..., 2n, 3n, ..., n!.

• We say f (n) is Θ(g(n)) if f (n) is O(g(n)) and g(n) is
O(f (n))

• Dominant Term Method: If
f (n) = g1(n) + g2(n) + ... + gk(n) and g1(n) is the
dominant term (grows the fastest for large n; all other
gi(n) are O(g1(n))), then f (n) is Θ(g1(n))

• The run time of an algorithm is expressed as a function
T(n) whose value is the worst-case run time for inputs of
size n.

• Usually, an algorithm with (nested) loops will have a run
time that is most easily expressed as a summation and a
recursive algorithm will have a run time most easily
expressed as a recurrence. Both can be simplified to closed
forms (e.g. with unrolling or recursion trees), which are
then frequently simplified further using big-O notation.

Big O

If on inputs of size n, one program takes 4n2 + n + 5 minutes to run
and the other takes 3n2 + 2 minutes, then you can use the second one
and save some time. But in this class, we’d like to look at a bigger
picture, and note (for example) that those two functions are almost
the same when compared with a program that takes n3 minutes: n3

grows faster than any quadratic, and so for large n it will be much
slower than either of the quadratic options. We thus define the fol-
lowing notation which categorizes functions by their behavior on

algorithm analysis and big o 2

large values:

Definition 1 (Big-O). For functions f , g : N → R≥0 1, we say that 1 R≥0 is the non-negative reals; R+ is
the positive realsf (n) is O(g(n)) (pronounced " f (n) is big-oh of g(n)") if the following

is true:

∃c ∈ R+(∃k ∈ R+(∀n ≥ k(f (n) ≤ c · g(n))))

Informally, f (n) is O(g(n)) if g(n) is always at least as big as f (n),
with two important caveats:

• We can multiply g(n) by any constant (c) first.

• We can ignore any constant number (k) of small values of n.

Example 2. n2 is trivially O(10n2) since n2 is never bigger than 10n2

(for any n ∈ N). Using the definition, we can choose c = k = 1, and
confirm that ∀n ≥ 1(n2 ≤ 1 · 10n2).

Example 3. 10n2 is O(n2). Notice that 10n2 is bigger than n2 for
any positive number, but it’s bigger only by a constant factor. In
particular, using the definition, we can choose c = 50 and k = 1, and
confirm that ∀n ≥ 1(10n2 ≤ 50 · n2) is true. (We could also have
picked any larger k, and any c ≥ 10.)

It may seem strange that we ignore constant factors like this. Intu-
itively, f (n) is O(g(n)) does not mean that f is actually smaller than
g, but rather that f scales up in a way that is no worse than g. So in
Example 3, note that n2 and 10n2 scale up in the same way: if you
make the input twice as big, the output gets four times bigger.

Example 4. 2n is O(g(n)), where g(n) is defined piecewise by

g(n) =

0 if n = 100
n
3 otherwise

Notice that for n = 100, g(n) is not only less than 2n, but since
it’s equal to 0, there is no multiple of g(n) that is at least 2n = 200.
However, the definition allows us to skip any fixed number of values
for n though our choice of k: in this case, if we choose k = 101 and
c = 6, then we can confirm that ∀n ≥ 101(2n ≤ 6 · n

3). (As always,
larger values of k and c would also have worked.)

Example 5. n3 is NOT O(10n2). We can prove this by arguing
that ∃c∃k(∀n ≥ k(n3 ≤ c · 10n2) is false - that is, that its nega-
tion ∀c∀k(∃n ≥ k(n3 > c · 10n2) is true. Fix k and c. 2 Then let 2 Notice that in the previous examples

we chose a specific k and c because we
were proving an existential statement,
but the negation we’re showing now
is a universal statement so we need to
leave them arbitrary. Meanwhile we
now have an ∃n, so we do get to choose
n.

n = max(k, 11c). This choice of n definitely satisfies n ≥ k. Addition-
ally, we have n ≥ 11c > 10c > 0, so n2(n− 10c) > 0, which implies
n3 > c · 10n2.

algorithm analysis and big o 3

In the same way that Big-O acts a little bit like a ≤ between func-
tions, we can also define notation corresponding in the same way to
other operators, the most important of which is equality:

Definition 6 (Big-Theta). We say that f (n) is Θ(g(n)) if f (n) is
O(g(n)) and g(n) is O(f (n)). 3 3 You will not need the following for

this class, but there is also standard
notation corresponding similarly to <,
≥, and >, namely o, Ω, and ω.

Example 7. Using Example 2 and Example 3, we see that 10n2 is
Θ(n2) (and also n2 is Θ(10n2)).

The dominant term method

Using similar techniques to the examples above, we can show that in
the following list of functions, each function f (n) is O(g(n)) for every
g to its right, and NOT O(g(n)) for every g to its left: 4 4 In other words, each f (n) is o(g(n))

for each g to its right - see previous
footnote

1, log(n), n, n log(n), n2, 2n, n!
Additionally, if 0 < a < b then the same holds for the lists na, nb

and an, bn.
For large enough n, any function later in one of these lists will

grow arbitrarily larger and faster than any function earlier in the list.
We call the fastest growing term in a sum the dominant term, and
when working with big-O it turns out that we can ignore all other
terms.

Example 8. The function 100n log(n) + 3n8 + 42n6 behaves, for
large enough n, like its dominant term 3n8. We can thus immediately
decide that 100n log(n) + 3n8 + 42n6 is Θ(n8).

Pitfalls with Big-O

If you look at other references, be aware that there are several minor
variations in the way big-O is defined and used. Some texts write
f (n) = O(g(n)) instead of our " f (n) is O(g(n))". Some texts define
big-O to work on real- or even negative-valued functions (by replac-
ing e.g. f (n) with | f (n)| in the definition).

You can find a selection of common big-O pitfalls in our MCS
textbook, section 14.7.4 (p634).

Algorithm Analysis

Consider the following algorithm, presented in pseudocode:

algorithm analysis and big o 4

Insertion Sort

1. insertionSort(A): // A: (1-indexed) array of size n

2. for each i from 2 to n:

3. j = i

4. while j > 1 and A[j] < A[j-1]:

5. swap the values in A[j] and A[j-1]

6. j = j-1

This algorithm sorts its input array A in ascending order.5 This 5 We won’t be concerned in this class
with proving that the algorithm suc-
cessfully sorts the array.

week, we’re interested in the deceptively simple question: how fast is
the algorithm?

We certainly can’t give an answer like "5 seconds", for many rea-
sons. First, we don’t actually want to give an answer in units of "sec-
onds", since that would depend on various details we don’t have
and don’t really care about at this level of abstraction, like how fast
the processor runs and what language the algorithm is coded in.
Thus we will usually come up with some other unit - either some-
thing problem-specific (like "swaps" for insertion sort), or something
generic like "steps" or "operations". Next, we can’t give a constant
answer like "5" since the answer depends in part on the size of the
input, so instead we will give our answer as a function of the input
size n - in our example, "n(n− 1)/2 swaps". Finally, even for inputs
of the same size, two different inputs might take different amounts
of time - in our example, an array that is already sorted will take less
time to sort because the while loop will end early whenever it finds
A[j] >= A[j − 1]. We will consider only the worst-case run time, so
in our example, we assume that the A[j] < A[j − 1] always comes
up true and we have to keep swapping until j = 1. 6 Finally, we will 6 Outside the scope of this class, there

are other analyses like average-case run
time that may also be useful.

often give our answer entirely in big-O notation - in our example, we
say insertion sort takes "O(n2) time".

Computing the run time of an algorithm with loops usually in-
volves creating a summation, computing the closed form of the sum-
mation, and then using big-O notation to simplify the answer.

Example 9. Let’s count the (worst-case) number of swaps done by
insertion sort on an input of length n. Since we assume in the worst
case that A[j] < A[j − 1] will always be true, for each fixed value
of i the while loop on lines 4-6 will have to perform one swap for
each j from i down to 2, i.e. i − 1 swaps. i ranges from 2 to n, so the
total number of swaps is T(n) = ∑n

i=2(i − 1). One way to compute
a closed form for that summation is to rewrite it in terms of a new
variable k = i− 1, so we get ∑n−1

k=1 k, which we have seen comes out to
(n−1)n

2 . Finally, if we want an answer in big-O notation, we can write
this as n2

2 −
n
2 , and we see that the dominant term is n2

2 , so we can say

algorithm analysis and big o 5

the run time is O(n2).

Recursive algorithms can be analyzed in a similar way, except that
instead of creating a summation, we will create a recurrence.

Example 10. Consider the following pseudocode: 7 7 Again we will only be concerned with
analyzing how long this code takes
to run; proving that it successfully
sorts the input array is beyond the
scope of this class but you can find
animations/proofs online if interested.

Merge Sort

1. mergeSort(A): // A: array of size n

2. if A has size 1:

3. return A

4. otherwise:

5. split A in half into L and R

6. L = mergeSort(L)

7. R = mergeSort(R)

8. Res = [] // an empty array

9. while L or R is non-empty:

10. move the smaller of L[1] and R[1] to end of Res

11. return Res

For simplicity we will assume that n is a power of 2, and we will
compute the (worst-case) run time T(n) for mergeSort. When n is 1,
we do some (small) constant c amount of work to just check that the
size is 1 and then return the given array, so T(1) = c. For larger n,
we make two recursive calls to mergeSort, each with an array of size
n
2 . We also do an additional amount of work that is proportional to n:
naively splitting A on line 5 may require copying n values into new
arrays, and the while loop on lines 9-10 does a constant amount of
work for each of the n values contained between L and R. This gives
us the following recurrence:

T(n) =

c if n = 1

2T(n
2) + dn otherwise

This has the closed form dn log2(n) + cn, 8 so the dominant term is 8 You can compute this with e.g. the
recursion tree method from last weekdn log2(n) and thus the run time is O(n log2(n)). (And since log2(n)

differs from log10(n) - or indeed any other log with fixed base - by a
constant, it is also accurate and more common to write that the run
time is just O(n log(n)).)

	Big O
	Algorithm Analysis

