
Counting
Benjamin Cosman, Patrick Lin and Mahesh Viswanathan

Fall 2020

TAKE-AWAYS

• Sum rule: If A1, . . . , An are disjoint,
∣∣∣∣ n⋃
i=1

Ai

∣∣∣∣ = n
∑

i=1
|Ai|.

• Product rule:
∣∣∣∣ n
×
i=1

Ai

∣∣∣∣ = n
∏
i=1
|Ai|.

• Bijection rule: If f : A→ B is a bijection, then |A| = |B|.

• Generalized product rule: The number of length k se-

quences where the i-th entry has ni possibilities is
k

∏
i=1

ni.

• Permutation rule: The number of permutations of distinct
objects is n! = n · (n − 1) · · · 2 · 1. The number of ways to
order k objects out of n is P(n, k) = n!

(n−k)! .

• Subset/combination rule: The number of ways to choose a
k-element subset from an n-element set is (n

k) =
n!

k!(n−k)! .

Discrete structures are often also called “combinatorial” struc-
tures, and for good reason: many of their properties are obtained by
combinatorics, i.e., the art of counting. We have seen examples of this
before.

Example 1. The Handshaking Lemma for undirected graphs1 was 1 |E(G)| = ∑v∈V(G) deg(v)
2

established by observing that each edge counts towards the degree of
two vertices, namely, its two endpoints.

Most of the “rules” we will cover are actually theorems, but here
we will be more interested in applying these concepts and using
them in proofs than in actually proving them.

Basic Counting

We will begin with the most basic counting rules.

Proposition 2 (Sum Rule). Given n disjoint2 sets A1, . . . , An, 2 i.e., Ai ∩ Aj = ∅ if i 6= j∣∣∣∣ n⋃
i=1

Ai

∣∣∣∣ = n
∑

i=1
|Ai|.

Example 3. |{1, 2, 3, 4, 5, 6}| = |{1, 2, 3} ∪ {4, 5, 6}| = |{1, 2, 3}| +
|{4, 5, 6}| = 6.
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Example 4. Suppose you ask for an explanation on an Examlet prob-
lem by posting a private note to Piazza. There are 3 instructors and 7
TAs, for a total of 10 people who could answer your question.

Example 5. In a tree, an internal vertex is any vertex that is not a leaf.
In a binary tree with i internal vertices wherein each internal vertex
has exactly two children, the total number of vertices is 2i + 1. Each
vertex is the child of some internal vertex, except for the root, and
each internal vertex has exactly two children. So adding 2 to itself
i times counts all of the vertices other than the root, which we can
account for by adding 1.

Proposition 6 (Product Rule). Given n sets A1, . . . , An,∣∣∣∣ n
×
i=1

Ai

∣∣∣∣ = n
∏
i=1
|Ai|. 3

3

n

×
i=1

Ai = A1 × · · · × An, and

n
∏
i=1

xi = x1 · x2 · · · xn.Example 7. For a directed graph G, E(G) ⊆ V(G)×V(G). The maxi-
mum number of possible edges is thus |V(G)×V(G)| = |V(G)|2.

Example 8. The set of binary sequences of length k is

{0, 1}k =

k times︷ ︸︸ ︷
{0, 1} × · · · × {0, 1}.

The number of such sequences is |{0, 1}|k = 2k.

In addition to using each rule individually, we can also use the
Sum and Product rules together.

Example 9. Two standard six-sided dice,4 one orange and one blue, 4 Standard here means the sides are
labeled 1 through 6.are rolled. How many ways can the sum of the two rolls be even?

Well, there are two ways for the sum to be even: both dice rolled odd
numbers, or both dice rolled even numbers. Each die has three possi-
ble even numbers and three possible odd numbers, so the number of
ways to roll two odd numbers is 3 · 3 = 9, and the number of ways to
roll two even numbers is also 3 · 3 = 9. The two cases cannot happen
at the same time, so we add the numbers together to see that the total
number of ways to roll an even sum is 9 + 9 = 18.

Example 10. Computer password practices used to be quite poor. It
was quite common for people to have passwords of length between
six and eight where the last character was a number, and the others
were all lower-case letters. Since there are 26 lower-case letters and
10 digits, the number of such password of length six is 265 · 10, the
number of length seven is 266 · 10, and the number of length eight
is 267 · 10. Thus the total number of such passwords is (265 + 266 +

267) · 10, which is about 8.35× 1010. This might seem like a lot, but
remember that modern computers are quite fast and can brute force
this number of possibilities quite quickly!5 5 If we take into account the fact that

people liked to use words or band
names (“blink182” was quite popular),
the number of actual possibilities is
reduced by quite a bit.

Proposition 11 (Bijection Rule). If f : A→ B is a bijection, |A| = |B|.
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Often the bijection rule is used together with one or more other
rules.

Example 12. Consider a set S of cardinality n, and let T be a subset of
S. Since T and S \ T are disjoint by definition, |T|+ |S \ T| = |S|, so if
|T| = k, |S \ T| = n− k. We can define a function f mapping a subset
of cardinality k to a subset of cardinality n− k via f (T) = S \ T. This
function is a bijection,6 so the number of subsets of cardinality k is 6 You should verify this for yourself.

the same as the number of subsets of cardinality n− k.

Example 13. Consider the function f : {0, 1}k → P({1, 2, . . . , k})
defined by f ((x1, x2, . . . , xk)) = {i | xi = 1}. f is a bijection,7 7 You should also verify this for your-

self.so the number of subsets of {1, 2, . . . , k} is 2k. More generally, one
can always find a bijection between any set S of cardinality k and
{1, 2, . . . , k}, so |P(S)| = 2|S|.

Counting Sequences and Subsets

In a prior example, we considered the case of counting binary se-
quences, and used the product rule to determine that the number of
binary sequences is 2k. One way to interpret this result is that there
are two possible values for each entry in the sequence. More gener-
ally, we can consider the situation where each entry can have some
other number of possible values.

Proposition 14 (Generalized product rule). The number of length k

sequences where the i-th entry has ni possibilities is
k

∏
i=1

ni.

This is really just the product rule applied to ni = |Ai|, but this
alternative viewpoint without the baggage of set notation allows us
to think about sequences as more than just elements of Cartesian
products. In particular, we have the following example:

Example 15. Consider a standard deck of 52 cards. We wish to com-
pute the number of ways to arrange the deck, i.e., the number of
possible sequences of cards where no card is repeated. Note that
the order matters here. There are 52 possible choices for the first
card, but once the first card has been chosen it cannot be repeated.
So there are 51 choices for the second card, and so on. In summary,
there are 52 · 51 · 50 · · · 2 · 1 = 52! ways of arranging the deck.

This specific kind of invocation of the Generalized product rule
involves a permutation: an ordering of n distinct objects in a sequence
so that each object appears exactly once. More generally, we may
wish to arrange a subset of the n objects as well.
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Example 16. Suppose 20 people enter a contest. How many ways can
we pick a first-place winner, a second-place winner, and a third-place
winner? Well, there are 20 choices for the first-place winner, and then
19 choices for second-place, and 18 choices for third-place, for a total
of 20 · 19 · 18.

Note that 20 · 19 · 18 = 20!
17! . More generally, we can summarize the

last two examples via the following rule:

Proposition 17 (Permutation rule). The number of permutations of
distinct objects is n! = n · (n− 1) · · · 2 · 1. The number of ways to order k
objects out of n is P(n, k) = n!

(n−k)! .

Example 18. Consider the following graph G. How many isomor-
phisms are there between G and itself?

a

b

c

d

e

f

g

h

Vertices b, c, and d can be permuted, as can vertices f , g, and h, in-
dependently of the permutation of b, c, d. a must map to itself, and e
must map to itself as well. None of b, c, d, can map to f , g, h or vice
versa. Combining the permutation rule and the generalized product
rule gives (3!) · (3!) = 36 possible self-isomorphisms of G.

Of course, when working with n distinct objects, we can also sim-
ply choose k of them without caring about the order. Let (n

k) denote
the number of ways to choose a k-element subset from a set of n el-
ements.8 We can compute (n

k) from the permutation rule: once we 8 (n
k) is read as “n choose k” and is

typeset via \binom{n}{k}.have chosen the k-element subset, there are k! ways of permuting
these elements, so (n

k)(k!) = P(n, k). Dividing both sides by k! gives
us the following:

Proposition 19 (Subset/combination rule). The number of ways to
choose a k-element subset from an n-element set is (n

k) =
n!

k!(n−k)! .

Recall that there is a bijection between the set of k-element subsets
of an n-element set and the set of (n − k)-element subsets. This is
consistent with the fact that (n

k) =
n!

k!(n−k)! =
n!

(n−k)!k! = ( n
n−k).

The subset rule is actually quite powerful, and can be applied
in some rather interesting ways. We will close out with some more
advanced examples of the subset rule being applied.
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More involved examples

Example 20 (Binomial Theorem). (x + y)n =
n
∑

k=0
(n

k)xkyn−k. When

expanding out (x + y)(x + y) · · · (x + y), we get one instance of the
term xkyn−k from each way of picking x from k of the factors, and y
from the remaining n− k. There are (n

k) ways of picking k factors out
of n.

The special case 2n = (1 + 1)n =
n
∑

k=0
(n

k) relates the number of

subsets of each cardinality k to the total number of subsets as seen in
an earlier example.

Example 21 (Monotonic paths in a grid). Suppose we are walking
on an integer grid. We start at (0, 0), and we would like to walk to
(m, n), by only ever walking to the right, or upwards. One possible
path from (0, 0) to (4, 3) is shown in the figure below.

If we are only ever allowed to move rightwards or upwards, then we
must move right m times and up n times during our path. So each
path consists of m + n steps, out of which we pick m to be rightwards
(or, equivalently, n to be upwards). In total the number of possible
paths is (m+n

m ) = (m+n
n ).

Example 22 (Integer-sum solutions). Suppose we want to know
how many non-negative integer solutions there are to the equation

n
∑

i=1
xi = k, where k is some integer constant. We will model this

problem using what is called a “stars-and-bars” formulation. For a
non-negative integer solution, we will form a sequence of k stars and
n − 1 bars, where we have x1 stars, then a bar, then x2 stars, then a
bar, and so on.

For example, consider the equation 5 + 2 + 0 + 3 = 10. This can be
represented via the following stars-and-bars diagram:

5
? ? ? ? ? |

2
? ? |

0
|

3
? ? ?

The integer values for the variables in a solution can be retrieved
by letting xi count the stars between the (i − 1)-th bar and the i-th
bar. This forms a bijection9 between the set of non-negative integer 9 As before, you should verify for

yourself that this is in fact a bijection!
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solutions to
n
∑

i=1
xi = k and the set of stars-and-bars diagrams with k

stars and n− 1 bars. So counting the number of non-negative integer
solutions is the same as counting the number of such stars-and-bars
diagrams.

We have a total of k + n − 1 symbols, out of which we need to
pick n − 1 to be bars (or, equivalently, k to be stars). So the total
number of stars-and-bars diagrams with k stars and n − 1 bars is
(k+n−1

n−1 ) = (k+n−1
k ).

Example 23 (Picking from a set with repeats). Suppose we have a
set of n elements, and we want to pick k elements, potentially with
repeats. For example, a fruit seller might sell four kinds of fruit:
apples, bananas, cantaloupes, and durians, and we want to buy a
total of ten fruits. One possibility is to buy five apples, two bananas,
zero cantaloupes, and three durians. How many ways can we do so?

We can always find a bijection between a set of n elements and
the set {1, 2, . . . , n}, and then view this problem as finding a non-

negative integer solution to the equation
n
∑

i=1
xi = k, where xi rep-

resents the number of times we take element i. But we already
solved this problem in the previous example: the answer is (k+n−1

n−1 )

(= (k+n−1
k )).
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