Simple Graphs and Trees
Benjamin Cosman, Patrick Lin and Mahesh Viswanathan

Fall 2020

TAKE-AWAYS

* A simple graph is a set of vertices along with a set of (undi-
rected) edges with no self-loops.

* Most concepts from directed graphs, like walks and paths,
can be used almost unchanged for simple graphs. A cycle
in a simple graph must be of length at least 3.

¢ The degree of a vertex is the number of edges incident to it.
Two vertices connected by an edge are adjacent.

e A graph is connected if there is a path from each vertex to
each other vertex.

* A connected acyclic graph is called a tree; its degree-1 ver-
tices are leaves.

e A tree can also be directed; edges point from parent to child
away from the root, and the height is the maximum distance
from the root to a leaf.

¢ Two graphs are isomorphic if they have the same number of
vertices, all connected in the same way.

* Some common graphs are the n-vertex line graph L;, the
n-vertex cycle graph C,, the (n+1)-vertex wheel graph W,
and the n-vertex complete graph Kj.

® A k-coloring in a graph is an assignment of k colors to ver-
tices so that adjacent vertices always have different colors.

® A graph’s chromatic number x is the smallest number of
colors needed to color it.

* A bipartite graph is one whose vertices can be split into two
non-empty groups and all edges go from one group to the
other.

* A matching in a bipartite graph is a way of pairing up all
vertices in one group with adjacent vertices in the other.

¢ Colorings and matchings are useful for solving different
kinds of allocation problems.

Simple Graphs and Trees

Figure 1: Left: A digraph of a symmetric, irreflexive relation. Right: The simple graph
that conveys the same information.

We saw last week that any relation R C A X A can be represented
by a directed graph. This week we will focus on symmetric, irreflex-
ive relations - that is, relations where the directed graph would have
no self-loops and each edge would have a matching edge going in the
other direction. We could continue to use directed graphs to model
these relations, but it is more convenient to replace all these pairs of
edges with single, undirected edges, as in Figure 1.

Definition 1. A simple graph is a set of vertices V(G) and a set of
edges E(G), where each edge (u — v) connects two different vertices
u and v (there are no self-loops).

Most of our definitions for directed graphs work unchanged for
simple graphs. A walk is still an alternating list of vertices and con-
necting edges, a path is still a walk with no repeat vertices, etc. One
change is that a cycle in a simple graph must have length at least
3. This is because a cycle of length 1 is impossible now that we are
disallowing self-loops entirely, and closed walks of length 2 are too
uninteresting to call cycles since crossing any edge back and forth
creates a length-2 closed walk.

Definition 2 (Degrees). Two vertices connected by an edge are adja-
cent, and the edge is incident to the two vertices. The degree of a vertex
is the number of edges incident to it.

Example 3. In the simple graph from Figure 1, vertex b has degree 3.

Definition 4. A graph is connected if there is a path from each vertex
to each other vertex. A graph is a tree if it is both connected and
acyclic. Degree-1 vertices in a tree are called leaves. (see Figure 2)

In a tree G, the following properties hold:
¢ There is exactly one path between any pair of vertices

* [E(G)|=V(G)[-1

SIMPLE GRAPHS AND TREES

2

SIMPLE GRAPHS AND TREES

ofoofdo

Figure 2: Left: A connected and cyclic graph. Center: A graph that is acyclic and not
connected. Right: A tree (acyclic and connected) with 1 and 3 as leaves.

Figure 3: A (directed) tree of height 2. The vertex at the top is the root, and e.g. b is the
parent of children d, e, and f.

Definition 5. A directed tree (Figure 3) is a digraph where there is
one root vertex with indegree 0 (i.e. no incoming edges), and exactly
one path from that root to each other vertex. Equivalently, a directed
tree is what you would get if you designated one vertex in a simple
tree to be the root, and then directed every edge to point from the
vertex closer to the root to the one farther away. A directed tree is
usually just called a tree - you have to figure out from context if the
tree being discussed is directed or simple. Each vertex is called the
parent of the vertices it has edges pointing to, and those vertices are
its children. The height of a tree is the maximum distance from the
root to a leaf.

Graph Isomorphism

Until now V(G) has always been made explicit, i.e. we’'ve always
labeled the vertices of our graphs. However, we often want to talk
about properties of a graph that depend only on its structure, in
which case we don’t care about the vertex labels. For example, the
tree in Figure 2 would be a tree regardless of what the vertices are
called. Thus we want an easy way to classify graphs as "having the
same structure".

Definition 6 (Isomorphism). An isomorphism between graphs G and
H is a bijection f : V(G) — V(H) such that all edges are preserved,
ie. (u—v)isanedgein G iff (f(u) — f(v)) is an edge in H. Two
graphs are isomorphic if there exists an isomorphism between them.

Example 7. G and H in Figure 4 are isomorphic. One isomorphism

SIMPLE GRAPHS AND TREES

Figure 4: Two isomorphic graphs

oo oo | | Ks Cs Ws

Figure 5: Examples of our common named graphs when n = 5. Notice that Ws has 6
vertices.

would be f(1) = x, f(2) = z,f(3) = y. A function that would not
work as an isomorphism would be g(1) = x,¢(2) = y,2(3) = z,
because edges are not mapped correctly: (1 —2) is an edge in G, but
(g(1) — g(2)) = (x —y) is not an edge in H.

When vertex labels don’t matter, we will frequently refer to a
class of isomorphic graphs by a single name. For example, since
both graphs in Figure 4 are 3 vertices connected in a line, we might
refer to them both (and any other graph isomorphic to them) as
"the graph L3", rather than specifying which exact one we're talking
about. Similarly, we frequently don’t label the vertices on a graph at
all if it doesn’t matter in context.

Here are a few graphs whose names you will need to know:

Definition 8 (Specific named graphs). See Figure 5 for examples of
each:

¢ The line graph L, is n vertices connected in a line.

® The complete graph Kj, is n vertices and all possible edges between
them.

e For n > 3, the cycle graph C, is n vertices connected in a cycle.

e Forn > 3, the wheel graph W, is C;; with one extra vertex that is
connected to all the others.

Colorings and Matchings

Simple graphs can be used to solve several common kinds of constrained-
allocation problems. For example, suppose you want to schedule

SIMPLE GRAPHS AND TREES

Figure 6: Three attempts at coloring L3 using colors from {R, G, B}. Left: A 2-coloring.
Center: A 3-coloring. Right: Not a coloring, because there are adjacent Red vertices (in
our example, we’d be scheduling two overlapping classes in the same room R).

classes in various rooms; two classes can use the same room as long
as they happen at different times, but they can’t use the same room
if their times overlap. We could solve this by first drawing a graph
where the vertices are classes and there is an edge between two
classes if they occur at overlapping times. Then we need to assign
rooms to the vertices such that the endpoints of each edge are always
different. This is an example of what we call a graph coloring:

Definition g (Coloring). A (k-)coloring of a graph is an assignment of

(k) colors™ to its vertices such that no two adjacent vertices have the *"Colors" can be drawn from any
same color. (see Figure 6) set: {red, green, blue} is fine but so is
’ {1,2,3}

Another class of constrained-allocation problem solvable using
graphs involves pairing things up. For example, a group of classes
all need to be assigned distinct rooms, and only certain class-room
pairings are acceptable (some classes need a big room, some need an
AV system, etc). To solve this, we first draw a graph with classes on
the left and rooms on the right, and acceptable class-room pairings
as edges. Then we search for a set of edges whose endpoints are all
distinct and include all classes (Figure 7). More generally:

Definition 10. A bipartite graph is a simple graph G whose vertices
can be split into two non-empty sets L(G) and R(G), such that each
edge has one endpoint in each set. A matching in a bipartite graph
is an injective function assigning to each vertex in L(G) an adjacent
vertex in R(G).

5

SIMPLE GRAPHS AND TREES 6

Figure 7: Left: a bipartite graph G where L(G) are classes, R(G) are rooms, and CS
173 needs a huge room while CS 491 can be held anywhere. Right: a matching in G
assigning each class to a distinct acceptable meeting place.

	Simple Graphs and Trees
	Graph Isomorphism
	Colorings and Matchings

