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TAKE-AWAYS

* Induction is a proof technique where to prove
Vn > 0(P(n)), you first prove P(0) (the base case) and then
prove Vk > 0((P(0) AP(1) A.. AP(k—1)) — P(k)) (the
inductive case)

e Sometimes you may need multiple base cases and/or a
base case that isn’t 0.

* Common errors in proofs by induction include omitting
the base case, reversing the implication, writing an
inductive step that fails for certain values, and using a
P(n) that isn’t a predicate.

Induction

Consider the following claim and its proof:

Proposition 1. For any k > 0, if powers of 6 smaller than 6* are each one
more than a multiple of 5, then 6* is also one more than a multiple of 5.

Proof. Fix k > 0 and assume towards a direct proof that powers of
6 smaller than 6% are each one more than a multiple of 5. Then in
particular, 651 is one more than a multiple of 5, i.e. it is 5m + 1 for
some m € Z, so we derive the following sequence of equations:

651 =5m+1 (from assumption)
6F =30m+6 (algebra)
65 =5(6m+1)+1 (algebra)

(6m +1) € Z because m € Z, so we have shown that 6 is one
more than a multiple of 5. O

This claim is true and the proof is valid, but by itself it’s pretty
useless: it doesn't tell us that any given power of 6 is actually one
more than a multiple of 5 unless we already know that the previous
ones are. In fact, we could just as well have proven this other claim
instead:



Proposition 2. For any k > 0, if powers of 6 smaller than 6 are each a
multiple of 5, then 6% is also a multiple of 5.

Proof. Fix k > 0 and assume towards a direct proof that powers of 6
smaller than 6F are each a multiple of 5. Then in particular, 65~! is a
multiple of 5, i.e. it is 5m for some m € Z, so we derive the following
sequence of equations:

61 =5m (from assumption)
6X = 30m (algebra)
65 = 5(6m) (algebra)

(6m) € Z because m € Z, so we have shown that 6 is a multiple
of 5. O

Both propositions are true: 65 cannot be both a multiple of 5 and
one more than a multiple of 5 at the same time, but remember that a
true implication statement can mean either that its right-hand side is
true or that its left-hand side is false, so the propositions do not con-
tradict each other. But that leaves us with the question: are powers
of 6 actually always multiples of 5, one more than multiples of 5, or
perhaps something different we haven’t thought of yet? To answer
this, we consider one more proposition:

Proposition 3. 6" is one more than a multiple of 5.
Proof. 6° =1 =5(0) +1 O

Again, by itself this proposition is pretty useless. But combined
with Proposition 1, this proposition allows us to prove a general
statement about all the powers of 6:

Proposition 4. For n € IN, 6" is one more than a multiple of 5.

"Proof”. * From Proposition 3, we know 6° is one more than a mul-
tiple of 5. Then because 6° is one more than a multiple of 5, Propo-
sition 1 tells us that 6! is also one more than a multiple of 5. Then
because 6! and 6° are each one more than a multiple of 5, Proposi-
tion 1 tells us that 62 is also one more than a multiple of 5. And so on
forever, so every power of 6 is one more than a multiple of 5. O

This idea is formalized in a proof technique called induction: to
prove that some property is true about every natural number, it suf-
fices to prove that the property is true about 0, and then prove that if
the property is true for numbers smaller than some k, it is also true
for k. Here’s what the ideas from Proposition 1, Proposition 3, and
Proposition 4 look like in a unified proof by induction:
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*Don’t actually write a proof like this
- we'll see a better way to do this with
induction in a moment
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INDUCTION

Proposition 5. For n € IN, 6" is one more than a multiple of 5.

Proof. We proceed by induction on 7.

Base Case: 60 = 1 = 5(0) + 1.

Inductive Case: Fix k > 0 and assume as our inductive hypothesis
that 6 is one more than a multiple of 5 for each i where 0 < i < k.
Then in particular, 61 is one more than a multiple of 5, i.e. it is
5m + 1 for some m € Z, so we derive the following sequence of

equations:
651 =5m+1 (from inductive hypothesis)
6K = 30m + 6 (algebra)
6F =5(6m—+1)+1 (algebra)

(6m +1) € Z because m € Z, so we have shown that 6 is one
more than a multiple of 5.
Induction complete. O

Let’s check where the arguments from the proofs of Proposition 3,
Proposition 1, and Proposition 4 appear in the proof above.

e The argument from Proposition 3 appears unchanged in the "base
case".

¢ The argument from Proposition 1 appears mostly unchanged in
the "inductive case". In a proof by induction we traditionally call
the assumption being made an "inductive hypothesis", but note
that it is the same as and serves the same purpose as the "direct
proof" version from Proposition 1.

¢ The argument from Proposition 4 has vanished entirely, because
it’s considered built in to the meaning of "induction": when you
write a proof using the template above ("We proceed by induc-
tion...base case...inductive case...induction complete"), it is under-
stood that you are implicitly making this infinite chain argument
at the end.

In general, for any predicate P(n), the proof template to prove a
claim Vi € IN(P(n)) by induction is as follows:

Proof. We proceed by induction on n.

Base Case: We need to show P(0). (insert argument here deriving
P(0) from other math facts; this will usually be quite trivial). Therefore,
P(0) is true.

Inductive Case: Fix k > 0 and assume as our inductive hypothesis
that P(i) is true for each i with 0 < i < k. Then we need to show that



P(k) is also true. (insert argument here that uses the assumption - often
just P(k — 1) but sometimes smaller i as well - to derive P(k)). Therefore,
P(k) is true.

Induction complete. 0

Proposition 5 is almost already written for you as Vn € IN(P(n)),
but in other cases it may be a challenge to figure out what the induc-
tive variable n or what the property P(n) should be. For example,
imagine a robot moving on a grid, which starts at the origin (0,0)
and at each step can only move diagonally - that is, if its current po-
sition is (x,y) then it can move to any of (x + 1,y +1), (x+ 1,y — 1),
(x—Ly+1),0or (x—1y—1).

Proposition 6. The robot described above can never reach (1,0).
To prove this, we first prove the following lemma:

Lemma 7. For any n > 0, after the robot has made any n moves, the sum of
the coordinates of its ending space is even.

Proof. We proceed by induction on n.

Base Case: We need to show that after the robot has made any 0
moves, the sum of the coordinates of its ending space is even. > After
the robot has made 0 moves, it is still at its starting location of (0,0),
and 0 + 0 is indeed even.

Inductive Case: Fix k > 0 and assume as our inductive hypothesis
that after taking any number of steps less than k, the robot’s ending
location has even sum of coordinates. Then we need to show that
after any k steps, the robot’s location also has even sum of coordi-
nates.3 Consider some sequence of k steps that the robot takes. After
the first k — 1 of those steps, it is at a location (x,y), and by the induc-
tive hypothesis, x + y is even. Then for the final, kth step, there are
four cases:

Case 1: The robot moves to (x + 1,y + 1). In this case, its ending
coordinates sum to (x +y) + 2. (x +y) and 2 are both even, so (x +
y) + 2 is also even.

Case 2: The robot moves to (x + 1,y — 1). In this case, its ending
coordinates sum to x + y, which we have already determined is even.

Case 3 and 4: Omitted since they’re very similar to 1 and 2.

Thus in every case the final coordinates are even, which is what we
needed to show; induction complete. O

Now that we have this lemma, the original proposition is trivial
to prove: every location the robot can reach in any finite number of

moves has an even sum of coordinates, so (1,0) must not be reach-
able.
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2 Identifying in advance what you need
to prove in each case is not strictly
necessary since it should be clear

from the structure of the proof, but

it’s probably a good idea to write it
anyway for your own sake so you keep
it straight.

3 As above, this sentence can be omitted
once you're comfortable with inductive
proofs.



The hardest part of proving Proposition 6 is thus structuring it as
an inductive proof at all: once you've figured out that it should be
proven by induction and how to state the lemma at all, proving the
lemma becomes a straightforward proof by induction, which will
hopefully become easy with practice. The trick of structuring this as
an inductive proof by using "path length" or "time" as the inductive
variable (or more generally, "number of state transitions") is a trick
that is particularly useful for computer scientists: it’s a key tool for
proving that a program is correct.

In the previous examples, we have been assuming that our prop-
erties hold for all values less than k, but only actually using that as-
sumption on k — 1.4 Here is an example where the full assumption
becomes useful:

Theorem 8. Every n > 2 is a product of one or more primes.>

Here’s an informal argument "proving" this theorem: Any integer
is either a prime itself (thus already a product of just one prime), or
it’s the product of two smaller integers which are each products of
primes. So for example, 30 is a product of primes because it’s the
product of 3 and 10, where 3 is already a prime and 10 is a further
product of 2 and 5. Just like with the inductive arguments in the
previous examples, this argument relies on smaller cases being true
to prove bigger ones, but now we are relying on various arbitrarily-
smaller cases, e.g. proving P(30) using P(3) and P(10), rather than
using P(29). Here is the argument formalized using induction:

Proof. We proceed by induction on 7.

Base Case: We need to show that 2 is the product of one or more
primes. 2 is a prime, so it is a product of just itself.

Inductive Case: Fix k > 2 and assume as our inductive hypothesis

that each number from 2 through k — 1 can be written as a product of
primes. Now we need to show that k can also be written as a product

of primes. There are two cases:

Case 1: k is prime. In this case, k is a product of just itself.

Case 2: k is not prime. In this case, by the definition of prime,
k = pq for some integers p and q greater than 1. p and g are also less
than k, so the inductive hypothesis applies to them: p can be written
as some product of primes p;py...px and g as a product of primes
g192---qy- Then k is the product of primes p1p...pxq142.--y-

In both cases, k is a product of primes, which is what we needed

to show; induction complete. O

This example had a minor new twist: we started somewhere other

than 0 (in this case, 2). This was appropriate given the statement
of the theorem, and is completely valid - the principle underlying
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4In some texts including our MCS
textbook, what we call induction is
called "strong" induction, and then
they have a separate version where you
only assume P(k — 1), which they call
"weak", "ordinary", or "mathematical”
induction. In this class we will only be
using strong induction.

5 By convention, the "product of one
number" is just itself. Recall: for inte-
gers greater than 1, a composite number
is one that can be written as a product
pq for some integers p and g greater
than 1, and a prime is a number which
is not composite.



induction doesn’t rely on any special properties of 0 in the natu-
ral numbers. (Instead, we could have written this to start at 0, as
long as we used an alternate predicate, e.g. instead of our implicit
P(n) ="n can be written as a product of primes", we could have used
Q(n) ="n+ 2 can be written as a product of primes", in which case
the theorem could be written as Vi > 0(Q(n)) rather than the more
natural Vn > 2(P(n)).)

Finally, sometimes we need multiple base cases, as in the example
below:

Theorem 9. It is possible to pay any amount of money 12¢ or greater using
just 4¢ and 5¢ coins.

Proof. Let P(n) be "it is possible to pay n¢ using just 4¢ and 5¢ coins",
and we proceed by induction on 7.

Base Cases: 12, 13, 14, and 15 can be paid using 4 +4+4,5+4+4,
5+5+4,and 5+ 5 + 5, respectively.

Inductive Case: Fix k > 15 and assume as our inductive hypothesis
that it is possible to pay all values between 12 and k — 1 (inclusive).
Then we need to show that it is also possible to pay k¢. Since k — 4 is
between 12 and k — 1, by the inductive hypothesis there is some pile
of coins that pays (k — 4)¢. Then adding a 4¢ coin to that pile pays k¢,
induction complete. O

Note that the inductive step relies on P(k — 4) instead of P(k — 1),
so e.g. P(16) relies on P(12), P(17) relies on P(13), and so on. This
means that P(12) through P(15) don’t have anything else to rely on,
so they must each be proven separately as a base case. (Another way
of thinking about this: if we had made the base case just 12 and then
began the inductive step with "Fix k > 12", then the later statement
"k — 4 is between 12 and k — 1" would not be true. And if we had
made the base case just 12 and then left the inductive step beginning
with "Fix k > 15, then neither of the two cases would have explained
why the property is true for n = 13, 14, or 15.)

Bogus induction proofs

There are several common ways of getting an induction proof wrong.

Leaving out the base case

The base case of an inductive proof is often trivial - see all the exam-
ples above. However, it’s still critical, and the proof isn’t valid if you
leave it out. To see this, here’s a false claim and an inductive "proof"
of that claim:
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False Claim 10. For n € IN, 6" is a multiple of 5.

"Proof”. We proceed by induction on 7.

Inductive Case: Fix k > 0 and assume as our inductive hypothesis
that 6' is a multiple of 5 for each i where 0 < i < k. Then in particu-
6k—1

lar, is a multiple of 5, i.e. it is 5m for some m € Z, so we derive

the following sequence of equations:

651 = 5m (from inductive hypothesis)
65 = 30m (algebra)
6 = 5(6m) (algebra)

(6m) € Z because m € Z, so we have shown that 6 is a multiple
of 5.
Induction complete. O

The algebra in the inductive case is completely valid; it establishes
the same true implication statement we saw in Proposition 2. But just
as in that earlier proposition, the implication is useless without also
proving that 6° is a multiple of 5, which can’t be done because it isn’t
true. Note that leaving out the base case in our proof of Proposition 5
would be equally unacceptable - an invalid proof technique doesn’t
become valid just because the statement it’s proving happens to be
true.

Reversing the implication

Recall that to prove p — g, you assume p and then derive g; it is

not a valid technique to assume g and derive p. Similarly, to prove
some equation x = y, you can start with various facts you already
know and derive x = y, but you can not just start with x = y and
then simplify it down to something that is true - that would be the
equivalent of proving [(x = y) — True], which may be true even as
x =y is false. (For example, just take any equation, true or false, and
multiply both sides by 0 to get something true.)

The same principles go for proof by induction, but are worth re-
stating here because it is a common error, perhaps because the p and
g in question look so similar. So in a standard proof by induction,
you will assume some P(0) A P(1) A ... A P(k — 1) and try to derive
P(k); do not instead assume P (k) and derive P(k — 1), e.g. if P(k)
is an equation, don't start with P(k) and then "simplify" it down to
P(k—1).
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Inductive step that fails for some values

Consider the following false claim and its "proof":

False Claim 11. For n € IN, in any group of n cats, all the cats are the
same colot.

"Proof”. By induction on #.

Base Case: In any group with just 1 cat, all cats in the group are
clearly the same color.

Inductive Case: Fix k > 1 and assume as our inductive hypothesis
that in any group with fewer than k cats, all the cats are the same
color. Then if we have k cats ¢y, ¢y, ..., ¢k, we can split them into two
overlapping groups ¢y, c3..., ck_1, and ¢y, ¢3..., ¢x. Each of those groups
has k — 1 cats, so by the inductive hypothesis they are all the same
color within each group. But then since the groups overlap, all k
must be the same color, induction complete. O

One way to find the flaw in the proof is to consider the smallest
case when the claim is false, namely 2 (there are definitely groups
of 2 cats where there 2 are different colors). It would be tempting to
then say that the flaw in the proof is that when k = 3, the proof is as-
suming something false (i.e. that groups of k — 1 = 2 cats must have
the same color). However, this is not the flaw - assuming something
false can be a valid step in many proofs, such as a proof by contradic-
tion, or a direct proof of a vacuously true implication statement. So
if P(n) here is the statement "in any group of # cats, all the cats are
the same color", then the problem is not in the (P(1) A P(2)) — P(3)
instance of the inductive case - that one’s actually (vacuously) true.
Rather, it must be somewhere in the P(1) — P(2) (i.e. k = 2) instance,
because a true statement (P(1)) cannot imply a false one (P(2)). And
we see that sure enough, when k = 2, the group of cats ¢y, ¢; is being
split into groups c; and ¢y that don’t actually overlap, so all talk of
"two overlapping groups" and "since the groups overlap" is wrong.

P(n) that isn't a predicate

Notice that in every example, P(n) was always a predicate - that is, a
statement that has a truth value of true or false once you plug in a
specific n. A final common mistake is to use something else instead,
like a numeric value. For example:

Proposition 12. For n € IN, 6" is one more than a multiple of 5.

"Proof”. Define P(n) as 6". We proceed by induction.
Base case: We need to prove P(0)... O

No, what would "proving P(0)" even mean now? P(0) was just
defined to be 6° aka 1; you can’t prove or disprove the number 1.



	Induction
	Bogus induction proofs

