
Propositional and Predicate Logic
Benjamin Cosman, Patrick Lin and Mahesh Viswanathan

Fall 2020

TAKE-AWAYS

• A proposition is a statement that can either be true (de-
noted T) or false (denoted F).

• Propositions can be combined using logical operators not
(¬), or (∨), and (∧), implies (→), and if and only if (↔), to
create new propositions.

• Two formulas/propositions P and Q are logically equivalent
(denoted P ≡ Q) if they have the same meaning. That is,
P and Q evaluate to the same value in all rows of a truth
table, or the formula P ↔ Q evaluates to T in all rows of a
truth table.

• The contrapositive of an implication P → Q is the formula
(¬Q) → (¬P). The contrapositive (¬Q) → (¬P) is logically
equivalent to P → Q. The converse of an implication P → Q
is the formula Q→ P.

• Predicates can either be universally quantified (∀x P(x)) or
existentially quantified (∃x P(x)) to create propositions from
predicates. Formulas can have multiple quantifiers and the
order in which they appear can influence their meaning.

• A domain of discourse identifies the set over which predi-
cate variables take values and the meaning of predicates. It
plays an important role in determining the truth of proposi-
tions.

Propositional Logic

In mathematics, our goal is to establish mathematical truths by
proving statements that hold. The statements we try to prove are
called propositions.

Definition 1 (Propositions). A proposition is a statement that can
either be true or false. We will denote true as T and false as F.

Let us look at some examples and non-examples of propositions.



propositional and predicate logic 2

Example 2. The following statements are all propositions because
they are either true or false: “5 is prime”; “Champaign is the capital
of Illinois”. On the other hand, questions like “When is this going to
end?” or commands like “Read these notes!” are not propositions.

The truth of a proposition is not evident from the statement, and
may depend on how terms are interpreted. For example, the state-
ment “Champaign is the capital of Illinois” (Example 2) is false if we
are referring to the political capital of the state. On the other hand, it
is true if we are referring to the intellectual capital of Illinois. We will
often find it convenient to abstract propositions and represent them
by variables. A propositional or Boolean variable is one that takes values
either true or false.

Logical Operators

Propositions can be combined using logical operators to create more
complex propositions. We will start with the logical operator not.
The negation of a proposition P is written ¬P and read “not P”. The
meaning of proposition ¬P depends on whether P is T or F. This is
often best described using a table that is called a truth table. A truth
table has columns corresponding to different propositions/formulas,
and has a row corresponding to each possible assignment to the
propositions that are being combined. Such a table describes how
the truth of ¬P depends on P. Figure 1 shows that truth table for
¬P, which shows that ¬P takes the value T when P is F, and takes
the value F when P is T. The disjunction of propositions P and Q

P ¬P
F T

T F
Figure 1: Truth table for ¬P

Figure 2: Truth table for P ∨Q

P Q P ∨Q
F F F

F T T

T F T

T T T

Figure 3: Truth table for P ∧Q

P Q P ∧Q
F F F

F T F

T F F

T T T

is written P ∨ Q and read “P or Q”. The meaning of P ∨ Q is given
by truth table shown in Figure 2 — P ∨ Q evaluates to F if both P
and Q are both F, and it evaluates to T in all other cases. It is worth
noting that P ∨ Q evaluates to T when both P and Q are T. Thus it
corresponds to an “inclusive or”. Another important logical opertor



propositional and predicate logic 3

is conjunction, written as P ∧ Q and read “P and Q”. The truth table
for P ∧Q (Figure 3) shows that this is T only in the case when both P
and Q are T. In all other cases, P ∧Q is F.

P Q P→ Q
F F T

F T T

T F F

T T T
Figure 4: Truth table for P→ Q

The next important logical operator is implication, which is writ-
ten as P → Q and read as “P implies Q”. P is the antecedent of the
implication, and Q is the consequent. The truth table for P → Q is
shown in Figure 4. It is F only when P is T but Q is F. In all other
cases it is T. It is important to observe that P → Q is T whenever P is
F. In mathematics, we are often confronted with proving that a state-
ment of the form P → Q is true. In such cases, if P can be shown to
be never true, then the implication is guaranteed to be true no matter
what Q is. When this happens we say that P → Q holds vaccuously.
Thus, P → Q doesn’t indicate a “causal” relationship between P and
Q. For example, the statement “If 1 = 2 then every Python program
is correct” is a vaccuously true statement since “1 = 2” is not true.
The fact that “If 1 = 2 then every Python program is correct” is true
says nothing about whether Python programs are correct.

An implication P → Q has two closely related propositions, called
the contrapositive and converse.

Definition 3 (Contrapositive and Converse). The contrapositive of an
implication P→ Q is the formula (¬Q)→ (¬P).

The converse of an implication P→ Q is the formula Q→ P.

P Q P→ Q Q→ P P↔ Q
F F T T T

F T T F F

T F F T F

T T T T T
Figure 5: Truth table for P↔ Q

Next, the proposition “P if and only if Q” is written as P ↔ Q
and is true if both P → Q and its converse Q → P are true. Using

the notation we have just developed, we could say P ↔ Q ∆
= (P →

Q) ∧ (Q → P). Based on this interpretation, we can draw a truth
table for P ↔ Q as shown in Figure 5. First we will evaluate P → Q
for each assignment of truth values to propositions P and Q. Next we



propositional and predicate logic 4

will evaluate Q → P. It is worth observing that P → Q and Q → P
do not evaluate to the same value in all cases. P ↔ Q is a conjunction
of P → Q and Q → P, which gives us the final result by conjuncting
the columns for P → Q and Q → P. Observe that P ↔ Q is true
exactly in the two cases when P and Q have the same values.

Logical Equivalence

Logical propositions that look different may have the

same meaning. This leads to the notion of logical equivalence.

Definition 4 (Logical Equivalence). Two formulas or propositions P
and Q are said to be logically equivalent (denoted P ≡ Q) if they have
the same meaning. That is, P and Q evaluate to the same value in
all rows of a truth table, or the formula P ↔ Q evaluated to T in all
rows of a truth table.

Let us look at some examples.

P Q P→ Q ¬P (¬P) ∨Q
F F T T T

F T T T T

T F F F F

T T T F T
Figure 6: Truth table for P→ Q and (¬P) ∨Q

Example 5. The formula P→ Q has the same meaning, or is logically
equivalent, to the formula (¬P) ∨ Q. To see why this is true, we
need to look at a truth table that evaluates these two formulas (see
Figure 6). Our truth table has a row corresponding to each evaluation
of propositions P and Q. The column P → Q evaluates its truth in
each case. To compute (¬P) ∨ Q we need to first compute ¬P and
then disjunct it with Q. Computing ¬P requires one to flip each
value in column P. ¬P ∨ Q is based on the columns for ¬P and Q,
and taking their disjunction. Observe that since the columns for
P → Q and (¬P) ∨ Q evaluate to the same value in each row of the
truth table, we can conclude that they are logically equivalent.

The contrapositive of an implication P → Q was defined to be
(¬Q) → (¬P) (see Definition 3). The significance of this definition
arises from the fact that P → Q ≡ (¬Q) → (¬Q). This is shown in
Example 6

Example 6. P → Q ≡ (¬Q) → (¬P). This can be seen through the
truth table in Figure 7, where we compute ¬P, ¬Q, and using these
columns compute P→ Q and (¬Q)→ (¬P).



propositional and predicate logic 5

P Q ¬P ¬Q P→ Q (¬Q)→ (¬P)
F F T T T T

F T T F T T

T F F T F F

T T F F T T
Figure 7: Truth table for P→ Q and (¬Q)→ (¬P)

The equivalence shown in Example 5 and Example 6 are two ex-
amples of logical equivalences that are often used in mathematical
reasoning. We list some of the other equivalences that are commonly
used.



propositional and predicate logic 6

Commonly used Equivalences

Equivalences between formulas are quite often used in sim-
plifying mathematical statements, and in writing proofs. We
list some commonly used equivalences. Constructing truth
tables to demonstrate these equivalences, is left for the reader
as an exercise. In each of the equivalences below P, Q, R are
any propositions.

1. Double Negation: ¬¬P ≡ P

2. The following two equivalences hold

P ∨ (¬P) ≡ T P ∧ (¬P) ≡ F

3. Identity: The following hold.

P ∨ F ≡ P P ∧ T ≡ P

4. Commutativity: The logical operators ∨ and ∧ are commu-
tative. That is,

P ∨Q ≡ Q ∨ P P ∧Q ≡ Q ∧ P

5. Idempotence: The logical operators ∧ and ∨ are idempotent.
That is,

P ∨ P ≡ P P ∧ P ≡ P

6. Associativity: The logical operators ∨ and ∧ are associative.
That is,

P ∨ (Q ∨ R) ≡ (P ∨Q) ∨ R P ∧ (Q ∧ R) ≡ (P ∧Q) ∧ R

7. Distributivity: The logical operators ∨ and ∧ distribute
over each other.

P ∨ (Q ∧ R) ≡ (P ∨Q) ∧ (P ∨ R)
P ∧ (Q ∨ R) ≡ (P ∧Q) ∨ (P ∧ R)



propositional and predicate logic 7

8. de Morgan’s Laws: These are two of the most important
equivalences that relate negation, conjunction, and disjunc-
tion.

¬(P ∨Q) ≡ (¬P) ∧ (¬Q)

¬(P ∧Q) ≡ (¬P) ∨ (¬Q)

Combining this with the law of double negation, de Mor-
gan’s Laws can be seen as a way to define conjunction in
terms of disjunction and negation (or disjunction using
conjunction and negation). Thus, we could say,

P ∨Q ≡ ¬((¬P) ∧ (¬Q))

P ∧Q ≡ ¬((¬P) ∨ (¬Q))

9. Implication: Implication can be defined in terms of dis-
junction and negation. That is, P → Q ≡ (¬P) ∨ Q. Thus,
using de Morgan’s laws and the law of double negation, we
could say

¬(P→ Q) ≡ P ∧ (¬Q).

10. Contrapositive: The contrapositive of an implication is
equivalent to the implication. That is P → Q ≡ (¬Q) →
(¬P).



propositional and predicate logic 8

The Logical Equivalence Problem and its central role in com-
puter science

Logical equivalence plays an extremely important role in
mathematics and in practical algorithms used in computer
science. There are two special forms of logical equivalence (or
inequivalence), namely validity and satisfiability, that play a
central role in computer science. A formula/proposition P is
said to be valid if P ≡ T, i.e., P evaluates to T in every row of
the truth table. On the other hand, a formula/proposition P is
said to be satisfiable if P 6≡ F, i.e., P evaluates to T in at least
one row of the truth table.
Algorithms for many computational tasks in different areas
of computer science essentially reduce to constructing a spe-
cial logical formula and checking if it is satisfiable. Examples
include reasoning in AI systems, path planning for robots
and autonomous cars/vehicles, circuit design and synthesis,
and verfication/testing of circuits and programs. Due to this
reason, significant energies have been devoted to developing
heuristics and tools to solve the logical equivalence (or more
specifically, the satisfiability) problem. Satisfiability and equiv-
alence engines are one of the main economic drivers in the
Electronic Design and Automation (EDA) industry.
What is the best way to solve logical inequivalence? That is,
given two formulas P and Q, how can we determine if P and
Q are inequivalent (or mean different things)? We have seen
one approach to solving this problem — build a truth table
and see if P and Q have different answers in some row of the
truth table! If P and Q depend on n propositional variables,
the truth table will have 2n rows. Note that to convince some-
one that P and Q are not equivalent, all we need to do is to
share a row where P and Q differ. Is there an algorithm that
will discover this distinguishing row without building all the
2n rows of the truth table? There are special cases of P and
Q for which this can be done. But is there an algorithm that
avoids building the entire truth table no matter which two
formulas P and Q are given?
This has remained a stubbornly difficult problem to answer
since the 1970s. In fact, it is among the most important sci-
entific questions known to mankind, and has a million dol-
lar prize from the Clay Mathematics Institute associated
with it (https://www.claymath.org/millennium-problems/
p-vs-np-problem). This is sometimes called the P versus NP
question.

https://www.claymath.org/millennium-problems/p-vs-np-problem
https://www.claymath.org/millennium-problems/p-vs-np-problem


propositional and predicate logic 9

Predicate Logic

Propositions in mathematics often arise through pred-
icates. A predicate is a proposition that depends on the value of
some variables. For example, the statement “x is prime” will either
be true or false depending on the value of x. Taking the standard
interpretation for a prime number, when x = 2, the statement “x is
prime” is true; and when x = 4 the statement “x is prime” is not true.
Predicates may depend on more than one variable. For example, the

predicate Q(x, y) ∆
= x + y = 0 depends on the values of both x and y.

One way to convert a predicate into a proposition, is by substitut-
ing values for predicate variables. For example, taking Q to be the
predicate defined in the previous paragraph, Q(2,−2) is the propo-
sition “2 + (−2) = 0”. Another way propositions in mathematics are
obtained from predicates, is through quantification. There are two
ways predicates can be quantified.

Universal Quantification. It is written like an upside down A. For a
predicate P, the proposition ∀x P(x), is read as “for all x, P(x)”.
This proposition is true, if the predicate P is true not matter what
value is substituted for x. Based on this interpretation, one can
observe a close correspondence between universal quantification
and conjunction. A proposition ∀x ∈ N P(x) is equivalent to
saying that P(0) is true, and P(1) is true, and P(2) is true, and so
on.

Existential Quantification. The second form of quantification is existen-
tial quantification which is written like a backwards E — ∃x P(x) —
and read “exists x P(x)”. The proposition ∃x P(x) is true if there
is some value we can assign to x such that th predicate P is true.
Thus, ∃x ∈ N P(x) is effectively saying that either P(0) is true or
P(1) is true or P(2) is true and so on.

The correspondence between universal quantification and conjunc-
tion, and existential quantification and disjunction, allows one to
infer logical equivalences like de Morgan’s laws for quantification.

¬(∀x P(x)) ≡ ∃x (¬P(x))
¬(∃x P(x)) ≡ ∀x (¬P(x))

Domains of Discourse. Recall that a formula ∀x P(x) says that the
predicate P is true no matter what value is substituted for x. But
where are the values drawn from? This given by the domain of dis-
course, which identifies the set over which predicate variables take



propositional and predicate logic 10

values and the meaning of predicates. It is given explicitly in a state-
ment like ∀x ∈ Z(∃y ∈ Z (x + y = 0)). Here variables x and y take
values over the integers (Z). It also tells us that + should be inter-
preted the way addition is usually defined over the integers. In some
cases, the domain of discourse is omitted from the statement. It is im-
plicit in such cases, and will be clear from the context. The domain of
discourse plays an important role in determining whether a formula
is true or not. For example the formula ∀x ∈ Z(∃y ∈ Z (x + y = 0))
is true, because for any integer x, if we take y = −x, which is also an
integer, then x + y is 0. On the other hand, if we change the domain
of discourse to be the set of natural numbers N, then the same for-
mula ∀x ∈ N(∃y ∈ N (x + y = 0)) is no longer true. For example, if
x = 1, then there is no natural number y you can add to x to get 0!

Order of Quantifiers. It is important to pay attention to the order of
quantifiers. Changing the order can completely change the meaning.
For example, the formula

∀x ∈ Z(∃y ∈ Z (x + y = 0))

is true, because we can take y to be −x. On the other hand,

∃y ∈ Z(∀x ∈ Z (x + y = 0))

not true — there is no number with the property that no matter what
we add to it, we get 0!


	Propositional Logic
	Predicate Logic

