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TAKE-AWAYS

• Probability space:

– Sample space S, the set of possible outcomes

– Probability distribution: Pr : S→ [0, 1] so that ∑
x∈S

Pr[x] = 1

– For an event E ⊆ S, Pr[E] = ∑
x∈E

Pr[x]

• “Counting” rules:

– Sum Rule: For disjoint E1, . . . , En, Pr
[

n⋃
i=1

Ei

]
=

n
∑

i=1
Pr[Ei]

– Difference Rule: Pr[A \ B] = Pr[A]− Pr[A ∩ B]

– Union Bound: Pr
[

n⋃
i=1

Ei

]
≤

n
∑

i=1
Pr[Ei]

– Monotonicity Rule: If A ⊆ B, then Pr[A] ≤ Pr[B]

• Conditional probability:

– Pr[x|B]: the probability of outcome x, given event B

– Kolmogorov’s Rule: Pr[A ∩ B] = Pr[A|B]Pr[B]

– Bayes’ Rule: Pr[A|B] = Pr[B|A]Pr[A]
Pr[B]

– Events A and B are independent if and only if

Pr[A|B] = Pr[A] if and only if Pr[A ∩ B] = Pr[A]Pr[B]

Suppose you are developing some algorithm for solving some
problem. A malicious attacker with seemingly unlimited resources
figures out that your algorithm is much slower on some inputs than
others.1 This attacker is spamming your program with the worst-case 1 For example, a naïve deterministic

implementation of the QuickSort
algorithm that chooses the first element
as the pivot every time is fast for most
inputs, but is much slower for an array
that is already sorted.

inputs, and you are losing your mind because every time you change
your implementation, the attacker figures out what the worst-case
inputs for your new implementation is. What are you going to do?

Well, computer scientists figured out a number of decades ago
that the thing to do is to randomize. If you randomly pick a strategy
every time, then the malicious attacker cannot predict which input
will be worst-case for that strategy every time.

Randomization doesn’t just help prevent against malicious attack-
ers, but it can also provide algorithms that are significantly faster in
practice than the best known deterministic algorithms, even though
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randomized algorithms are not always guaranteed to be correct or
to finish quickly. The most useful algorithm for checking if a large
number is prime, for example, is a randomized algorithm; the fastest
deterministic algorithm for accomplishing the same task is signifi-
cantly slower.

Well, what does randomization mean, mathematically? How do
we analyze a randomized strategy? The answer lies in the study of
Probability Theory.

Finite Probability with Equal Likelihoods

Recall the following example from the Notes on Counting:

Example 1. Two standard six-sided dice,2 one orange and one blue, 2 Standard here means the sides are
labeled 1 through 6.are rolled. How many ways can the sum of the two rolls be even?

The number of ways to roll two odd numbers is 3 · 3 = 9, and the
number of ways to roll two even numbers is also 3 · 3 = 9. Adding
the numbers together gives the total number of ways to roll an even
sum as 9 + 9 = 18.

One natural question to ask is not the how many even-sum out-
comes there are, but rather what percentage of the set of total out-
comes are even-sum outcomes. For the preceding example, the
computation is simple: each die has six possibilities, for a total of
6 · 6 = 36 total outcomes, so half of the possible outcomes are even-
sum outcomes.

We formalize this in terms of probability, and specifically, because
this is a course on Discrete Structures, we will be focused on discrete
probability.

Formally, we have a sample space S, which is a (finite) set of pos-
sible outcomes. For example, in the case of our blue and orange dice,
the S = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}. An experiment is some proce-
dure that generates some outcome of the sample space. In the case of
the blue and orange dice, an experiment would simply be rolling the
dice. For now, we will work with the assumption that every possible
outcome from the sample space happens with uniform probability, i.e.,
that each outcome is equally likely. We write this as Pr[x] = 1

|S| for all
x ∈ S.

As we have seen before, we are commonly not interested in the
probability of one specific outcome, but rather the probability of
some set of outcomes occuring. In the language of probability, sub-
sets of the sample space are called events. The probability of an
event E is denoted by Pr[E], and under our current working assump-
tion that each outcome is equally likely, Pr[E] = |E|

|S| . The complement

event E = S \ E is simply the event that E does not happen.
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In this situation, trying to compute the probability of an event can
simply be done by counting, which presumably we now know how
to do.3 3 Now would be a good time to practice

more counting if you are still nervous
about last week’s material :)Example 2. Consider a coin whose sides are labeled Heads (H) and

Tails (T). Suppose the coin is flipped twice. What is the probability
that both flips land on Heads? Well, the set of possible outcomes is
S = {HH, HT, TH, TT},4 and the event that both flips is heads is 4 To be precise, the elements of S should

really be pairs, e.g., (H, T), but the
parentheses and commas mostly serve
to add clutter.

E = {HH}. Comparing the cardinalities of the two sets, we find
Pr[{HH}] = 1

4 .

Example 3. Two standard six-sided dice, one orange and one blue,
are rolled. We will compute the probability that the blue die rolls
at least a 5. That is, we want to compute Pr[{5, 6} × {1, 2, 3, 4, 5, 6}].
|{5, 6} × {1, 2, 3, 4, 5, 6}| = 2 · 6 = 12, so the probability is 12

36 = 1
3 .

Example 4. A random binary sequence of length n is picked. What
is the probability that exactly k entries have value 1? The number
of length n binary sequences is 2n, but how do we count the num-
ber of sequences with exactly k 1s? Recall that there is a bijection
f : {0, 1}n → P({1, 2, . . . , n}) given by f ((x1, . . . , xn)) = {i | xi = 1}.
Under this bijection the binary sequences with exactly k 1s corre-
spond to the k-element subsets of {1, 2, . . . , n}, and we know that
there are (n

k) such subsets. So the probability is (n
k)
/

2n .

Discrete Probability

Previously we considered the situation where every outcome hap-
pens with equal likelihood. In general, this is not the case. Consider,
for example, a coin that has been weighted so that it lands on one
side with much higher likelihood than the other, and so we wish to
have some way to quantify that.

The solution will be to define a probability distribution over
our sample space S, which is a function Pr : S → [0, 1] such that
∑x∈S Pr[x] = 1. The requirement that ∑x∈S Pr[x] = 1 ensures that the
probability that some outcome occurs is 1, which is consistent with
the uniform case. In general, the probability of an event E will be
Pr[E] = ∑x∈E Pr[x]. 5 5 In continuous probability, the sample

space is infinite and comes with a
“measure” over which we can integrate.
The probability of a specific outcome is
meaningless, and only ever work with
probabilities of events, as computed
via the integral Pr[E] =

∫
E p(x) dx, for

some “probability density” p : S →
[0, 1]. Doing this precisely is a messy
business. In particular, we cannot allow
all subsets of S to be valid events, due
to subtleties of measure theory that are
well beyond the scope of this course.
As a result, the axioms for continuous
probability usually require a declaration
of a family of subsets that are valid
events.

Example 5. Suppose we roll a die that has been manufactured so
that 1 is rolled with probability 1

2 , 6 is rolled with probability 1
6 , and

the remaining four numbers are each rolled with probability 1
12 . The

probability of rolling an even number is Pr[{2, 4, 6}] = Pr[2] + Pr[4] +
Pr[6] = 1

12 + 1
12 + 1

6 = 1
3 .

As we saw previously, when working under the uniform distribu-
tion, the fact that Pr[E] = |E|

|S| allows us to make use of the Counting
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rules from last week for computing |E|. For non-uniform distribu-
tions, we can no longer use said rules in their original form, because
Pr[E] is no longer computed via only cardinalities. However, we can
recover similar rules.

Proposition 6 (Sum Rule). 6 For disjoint events E1, . . . , En, 6 Some sources declare this as an axiom
of Probability instead of defining
Pr[E] = ∑x∈E Pr[x]. This is especially
important in continuous probability,
as in that setting the probability of an
individual outcome is meaningless.
For discrete probability, either choice
is acceptable: if we assume the Sum
Rule we easily conclude that Pr[E] =
∑x∈E Pr[{x}].

Pr
[

n⋃
i=1

Ei

]
=

n
∑

i=1
Pr[Ei].

Proof. By definition, Pr [
⋃n

i=1 Ei] = ∑x∈⋃n
i=1 Ei

Pr[x]. If E1, . . . , En are
disjoint, then each element x ∈ ⋃n

i=1 Ei appears in exactly one Ei, so
∑x∈⋃n

i=1 Ei
Pr[x] = ∑n

i=1 ∑x∈Ei
Pr[x] = ∑n

i=1 Pr[Ei].

Corollary 7 (Difference Rule). Pr[A \ B] = Pr[A] − Pr[A ∩ B]. In
particular, Pr

[
B
]
= 1− Pr[B].

Proof. Recall that A \ B = {x ∈ A | x /∈ B}. Since A ∩ B = {x ∈ A |
x ∈ B}, A \ B and A ∩ B are disjoint, and A = (A \ B) ∪ (A ∩ B). So
Pr[A] = Pr[A \ B] + Pr[A ∩ B].

As nice as the sum rule is, we will often find ourselves in situa-
tions where we cannot guarantee that the events are disjoint, and
furthermore we will find it difficult to figure out by how much we
have overcounted. In such a situation, we will often settle for being
able to compute upper and lower bounds on the actual probability.

Corollary 8 (Union Bound). 7 Pr
[

n⋃
i=1

Ei

]
≤

n
∑

i=1
Pr[Ei]. 7 The Union Bound also appears in the

literature under the names “Boole’s
inequality”, “the Bonferroni inequality”,
and “subadditivity of measures.”Corollary 9 (Monotonicity Rule). If A ⊆ B then Pr[A] ≤ Pr[B].

Example 10. A task in the recently popular game Among Us8 is to 8 Given how quickly trends come
and go, this pop culture reference is
probably9 already stale.
9 Pun intended.

correctly connect a set of four wires. Consider a more general version
of the problem, where the player needs to connect n wires. A player,
trying to speedrun this task, will fail to connect each wire with prob-
ability p. That is, letting Ei be the event that the i-th wire is correctly
connected, Pr[Ei] = 1− p for each 1 ≤ i ≤ n. Let E be the event that
the task is completed correctly. By definition, E =

⋂n
i=1 Ei, because

the task is completed correctly exactly when all n wires are correctly
connected. What is Pr[E]?

Without further information, it will be difficult to find an exact
answer, but we can still compute some useful bounds.

On the one hand, we have E ⊆ E1, so by the monotonicity rule,
Pr[E] ≤ Pr[E1] = 1− p. On the other hand, E =

⋃n
i=1 Ei, 10 so by the 10 This is an application of DeMorgan’s

law for sets, A ∩ B = A ∪ B.union bound, Pr[E] ≤ ∑n
i=1 Pr[Ei] = np, so applying the difference

rule gives us Pr[E] = 1− Pr[E] ≥ 1− np.
In summary, 1− np ≤ Pr[E] ≤ 1− p. For example, a good player

who fails each wire with probabilty 5% will succeed on four wires
with probability between 80% and 95%. Not bad!
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Conditional Probability

A common situation that occurs in probability is when we know
something that can reduce the sample space.

Example 11. A gambler walks up to a table, and is told that they
can bet on the value of the sum of two standard six-sided dice, one
orange and one blue. Suppose the gambler puts their money on
the sum being (strictly) less than 7. If these are standard dice, then
we can fall back to counting to find that there are fifteen possible
outcomes that lead to this sum, out of thirty-six, for a probability of
15
36 = 5

12 of the gambler winning. However, to generate excitement
and tension, the dealer first rolls the orange die, waits for everyone to
gasp with excitement, and only then rolls the blue one. If the orange
die rolled a 6, then we know that the gambler has lost, for there is no
way for the blue die to roll a 0. But if the orange die rolls a 1, then we
know that as long as the blue die does not roll a 6, then the gambler
has won; in short, the probability of the gambler winning, conditioned
on the orange die rolling a 1, is 5

6 , whereas the probability of winning,
conditioned on the orange die rolling a 6, is 0.

Formally, we define conditional probability as follows.

Definition 12. For an outcome x, the probability of x given event B,
written Pr[x|B], is defined as

Pr[x|B] =


Pr[x]
Pr[B] if x ∈ B,

0 otherwise.
For an event A, Pr[A|B] = ∑x∈A Pr[x|B].

Proposition 13 (Kolmogorov’s Rule). 11 Pr[A|B]Pr[B] = Pr[A ∩ B]. 11 For continuous probability, this is
often taken as the definition of condi-
tional probability, since, as before, the
probability of an individual outcome is
meaningless.

Proof. By definition, Pr[A|B] = ∑x∈A Pr[x|B]. We can split this sum
into ∑x∈A Pr[x|B] = ∑x∈A∩B Pr[x|B] + ∑x∈A∩B Pr[x|B], but recalling
that Pr[x|B] = 0 for x /∈ B, the second term cancels to 0. Furthermore,
∑x∈A∩B Pr[x|B] = ∑x∈A∩B

Pr[x]
Pr[B] = 1

Pr[B] ∑x∈A∩B Pr[x] = Pr[A∩B]
Pr[B] .

Rearranging the resulting equation Pr[A|B] = Pr[A∩B]
Pr[B] gives the stated

rule.

Applying Kolmogorov’s rule in two different ways, once to Pr[A|B]
and once to Pr[B|A], gives us Pr[A|B]Pr[B] = Pr[A∩B] = Pr[B|A]Pr[A].
Rearranging the two ends of this equation gives us the following:

Corollary 14 (Bayes’ Rule). Pr[A|B] = Pr[B|A]Pr[A]
Pr[B] .

One final thing to note about the earlier example of the gambler
betting on the sum of the rolls being less than 7: in our calculation
for the conditional probability based on the blue die’s outcome, each
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outcome of the orange die’s roll had equal likelihood, no matter what
the blue die rolled beforehand. In the language of probability, the
orange die’s outcome and the blue die’s outcome are independent.

Definition 15. Events A and B are independent if A does not depend
on B, i.e., Pr[A|B] = Pr[A]. Equivalently,12 Pr[A ∩ B] = Pr[A]Pr[B]. 12 via Kolmogorov’s rule

Example 16. Recall that in the earlier example of the wires task
from Among Us, we were unable to produce an exact bound. One
reason is that we could not say that the events Ei were all mutually
independent, i.e., that Pr[E] = Pr [

⋂n
i=1 Ei] = ∏n

i=1 Pr[Ei], and we had
to settle for somewhat loose upper bounds and lower bounds instead.

If we could say that the events Ei were all independent, i.e., suc-
cess on any one wire does not affect the probability of success any
other wire, then we could simply compute Pr[E] as ∏n

i=1 Pr[Ei] =

(1− p)n. In reality, messing up one wire is likely to affect a player on
subsequent wires. If we knew the conditional probabilities, we would
be able to apply Kolmogorov’s rule (repeatedly). For example, for
n = 4, Pr[E] = Pr[E1]Pr[E2|E1]Pr[E3|E1 ∩ E2]Pr[E4|E1 ∩ E2 ∩ E3].

More Examples

Example 17 (Binomial Distribution). Consider a coin that has been
weighted so that it flips Heads with probability p (and so flips Tails
with probability 1− p). Suppose we flip the coin independently13 n 13 Each coin flip is called a Bernoulli trial.

times. What is the probability of flipping Heads exactly k times out
of n?

By independence, the probability of any sequence of flips that
includes exactly k Heads is pk(1 − p)n−k: we need to flip Heads
exactly k times, and we need to flip Tails all the other n − k times;
each Heads is flipped with probability p and each Tails is flipped
with probability 1− p.

We also know that there are (n
k) ways to choose k out of n flips to

be Heads, and each of these events are disjoint, so applying the sum
rule tells us that the probability of flipping exactly k Heads out of n is
(n

k)pk(1− p)n−k.
As a sanity check, we should be able to verify that summing this

probability over all k should lead to a value of 1. Applying the Bino-
mial Theorem,14 we get ∑n

k=0 (
n
k)pk(1− p)k = (p + (1− p))n = 1n = 1. 14 Example 20 of the Counting Notes

Example 18 (Birthday Paradox). For n ≤ 365, we consider n people,
each of whom were born on one of the 365 dates in the standard non-
leap-year calendar. We will assume that the each person is equally
likely to be born on each day,15 and that these probabilities are all 15 This assumption is not entirely

representative of reality. According to
one study, between the years of 1994

and 2004, births in September were
slightly more common in United States
than births in other months.

independent. We want to compute the probability that at least two
people have the same birthday.
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It will turn out to be easier to compute the probability of the com-
plement event, that everyone has a different birthday.

Since n ≤ 365, each way of having n people, each of whom has a
different birthday, corresponds to an ordering of n dates out of 365.
The number of such orderings is P(365, n) = 365!

(365−n)! ; since each
person’s birthdays are assumed to be independently chosen, each
of these orderings occurs with equal probability. The total number
of possible sequences of birthdays is 365n, so the probability that
everyone has a different birthday is P(365,n)

365n , and so the probability

that at least two people share a birthday is 1 − P(365,n)
365n . It turns out

that for n ≥ 23, the probability that two people share a birthday is
over 50%; for n ≥ 57 the probability is over 99%.

Example 19 (Birthday Attacks). The Birthday Paradox has ramifica-
tions in cryptographic hashing. When sending secure messages, often
a digital signature is used to verify that the message is legitimate:
given a message m, a hash h(m) of the message is computed and
signed; the message and signature are both sent together. In the ver-
ification process, one checks that the hash that was signed matches
the original message. The trouble arises when multiple messages
are found that hash to the same value, and a fraudulent message is
passed along with a legitimate signature. Replacing people with mes-
sages and birthdates with hashes in the previous example shows the
importance of hashing into a large number of possible values.

Example 20. Suppose we independently throw n balls into n bins
uniformly at random.16 Suppose we are instead interested in the 16 this means that each ball falls into

each bin with equal probabilityprobability that at least k of the balls land in the same bin. Our intu-
ition might tell us that for large values of k, this probability should be
small, but let us see how to justify this.

For a subset S of the balls, let ES be the event that all those balls
fall into the same bin. If at least k balls fall into the same bin, then
there is some subset containing exactly k balls wherein all k balls fall
into the same bin. Thus letting T be the set of all k-element subsets of
the balls, the probability we are trying to compute can be written as
Pr[
⋃

S∈T ES]. Computing this probability exactly is difficult since the
various ES events are not independent, but we can easily compute the
union bound: Pr [

⋃
S∈T ES] ≤ ∑S∈T Pr[ES].

The number of different k-element subsets, i.e. |T|, is (n
k). For any

fixed S ∈ T, we can compute Pr[ES] as follows: for each of the n bins,
the probability that all k balls fall into that specific bin is 1

nk ,17 so the 17 This is the part where we used
independence.probability that all k balls fall in the same bin is n · 1

nk = 1
nk−1 . In sum:

Pr [
⋃

S∈T ES] ≤ ∑S∈T Pr[ES] = (n
k)

1
nk−1 = n!

k!(n−k)! ·
1

nk−1 ≤ nk

k! ·
1

nk−1 = n
k! ,

so n
k! is a simple (though not necessarily very tight) upper bound on

the probability that at least k balls end up in the same bin.
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