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TAKE-AWAYS

• Direct proofs are used prove implications of the form
∀x P(x) → Q(x). The proof begins by assuming that
P(x) holds for an arbitrary element x, and tries to show
that Q(x) must hold.

• Proofs by contraposition prove the contrapositive of
∀x P(x)→ Q(x) to establish ∀x P(x)→ Q(x).

• To prove if and only if statements ∀x P(x) ↔ Q(x), we
need to show ∀x P(x)→ Q(x) and ∀x Q(x)→ P(x).

• Proofs are often broken into cases, where each case is
proved separately.

• Proof by contradiction is an indirect proof method to prove
a proposition P. In the first step of such a proof, ¬P is
assumed, and one tries to derive a contradiction.

Proofs are arguments that convince us about the truth of a propo-
sition. They are a series of logical deductions, starting from a set of
common understood facts called axioms, that establish the proposition
being proved. In most cases, proofs follow a few standard templates
that we will look at in these notes. As we shall see, the templates are
often closely tied to the form of the statement one is trying to estab-
lish. Thus these templates provide an initial outline with details to be
filled in based on the task at hand. Before looking at these proof tem-
plates, let us consider the types of statements one usually encounters.

Statements

Statements are one of two forms: existentially quantified state-
ments or universally quantified statements. The general template
used to establish these differs, and it is useful to highlight this differ-
ence.

Existentially quantified statements are of the form ∃x P(x). To
prove such a statement, one usually finds an example value for x
such that P(x) holds 1. Let us look at an example. 1 There are certain cases when the

proof of an existential statement is non-
constructive. We will not encounter such
proofs in this class.
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Definition 1. A non-negative integer n ∈ N is a perfect square if
there is another integer a such that n = a2. For example, 1, 4, 9, 16, . . .
are all perfect squares, while 2 and 3 are not perfect squares.

Proposition 2. There is an integer n that is not the sum of two perfect
squares.

Proof. To prove the statement, all we need to do is find an integer
that is not the sum of two perfect squares. In this case we can take
n = −1. Observe that since all perfect squares are non-negative, the
sum of any two perfect squares will also be non-negative. Therefore,
−1 cannot be the sum of two perfect squares.

Universally quantified statements are of the form ∀x P(x). They
are typically more difficult to prove than existentially quantified
statements. Their proofs begin by starting with an arbitrary value for
x (and not a specific one), and showing the predicate P is true for this
arbitrary value. Let us look at an example.

Example 3. Suppose we want to prove that if n ∈ Z is odd then
n2 is also odd. To prove such a statement, it is not sufficient to take
a specific odd value for n (say 5) and showing that 52 = 25 is also
odd. Instead, its proof will begin by picking an arbitrary odd number
as n and then showing that n2 is odd. We will write a proof for this
statement later in these notes.

We conclude this section by observing that the statement in Ex-
ample 3 — if n ∈ Z is odd then n2 is also odd — does not explicitly
quantify n. We assume that it is universally quantified. That is, “if
n ∈ Z is odd then n2 is also odd” really means “for every integer
n, if n is odd then n2 is odd”. This is typical: if a variable in a state-
ment is not quantified, like n in this example, it will be assumed to be
universally quantified.

Direct Proofs

The first proof template we will consider is for a conditional state-
ment of the form

∀x (P(x)→ Q(x)).

Since this is a universal statement, such proofs begin by taking x to
be an arbitrary value. Recall that an implication P(x) → Q(x) is false
in only one scenario: when P(x) is true and Q(x) is false. Thus, for
an implication to be true, we need to argue that the combination of
P(x) being true and Q(x) being false cannot occur. A direct proof,
therefore, proves an implication by showing that if we assume P(x)
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to be true then Q(x) must also be true. Thus such a proof template
looks as follows

Let x be an arbitrary element.
Assume P(x) holds.
...
Goal: Q(x)

Let us look at an example.

Definition 4. An integer n ∈ Z is even if there is an integer k such
that n = 2k. An integer n is odd if there is an integer k such that
n = 2k + 1.

Proposition 5. If n is an odd integer then n2 is an odd integer.

Proof. Let n be an arbitrary integer. Assume that n is odd. Since n is
odd, there an integer k such that n = 2k + 1. Now,

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.

Observe that since k is an integer, 2k2 + 2k is also an integer, and
so n2 is two times an integer (namely, 2k2 + 2k) plus 1. Hence, n2 is
odd.

More generally, direct proofs can be written for statements of the
form

∀x((P1(x) ∧ P2(x) ∧ · · · ∧ Pk(x))→ Q(x)).

The proof template follows the same pattern as before starting from
assuming the antecedent and trying to prove the consequent. The
only difference is that when you start the proof, you may now as-
sume that each of the conjuncts in the antecedent holds.

Let x be an arbitrary element.
Assume P1(x), P2(x), . . . Pk(x) hold.
...
Goal: Q(x)

Let us look at an example.

Proposition 6. If n is an odd integer and m is an odd integer then nm is
an odd integer.

Proof. Let n, m be arbitrary integers. Assume that n and m are both
odd. Then there are integers k, ` such that

n = 2k + 1 m = 2`+ 1.

Observe that nm = (2k + 1)(2`+ 1) = 4k`+ 2k + 2`+ 1 = 2(k`+ k +
`) + 1. Now since k and ` are integers, so is k`+ k + `, and hence nm
is odd.



writing proofs 4

Proofs by Contraposition

Proofs by contraposition is another method to proof an implica-
tion statement. The difference from a direct proof is that in a proof by
contraposition we prove the equivalent contrapositive form, instead
of the original statement. Thus, to show ∀x (P(x) → Q(x)), we prove
the contrapositive ∀x (¬Q(x)→ ¬P(x)). Let us look at an example to
see how this works.

Proposition 7. For any integer n, if n2 is even then n is even.

Proof. Let n be an arbitrary integer.
A direct proof starting with the assumption that n2 is even, cannot

be advanced. Let us write out the first few steps to see where we
get stuck. So assuming n2 is even, we know that there is an integer k
such that n2 = 2k. What can we say about n? Is n =

√
2k even? We

can’t even argue that
√

2k is an integer!
Instead, it is easier to prove the contrapositive. The contrapositive

is “if n is not even then n2 is not even”. Observe that an integer that
is not even is odd. So we can rewrite the contrapositive as “if n is an
odd integer then n2 is odd”. This can be established by a direct proof
as we saw in Proposition 5.

One case where proofs by contraposition are useful, is when trying
to prove a statement of the form

∀x (P(x)→ (Q1(x) ∨Q2(x) ∨ · · · ∨Qk(x))).

Observe that the contrapositive of such a statement is

∀x ((¬Q1(x) ∧ ¬Q2(x) ∧ · · · ∧ ¬Qk(x))→ ¬P(x)).

Thus the contrapositive in this case is consistent with the form of
statements that can be established by a direct proof.

Proposition 8. Let m, n be integers. If mn is even then either m is even or
n is even.

Proof. Let m, n be arbitrary integers. The contrapositive of the propo-
sition is “if m is not even and n is not even then mn is not even”.
Using the duality of odd and even, the contrapositve can be rewrit-
ten as “if m is odd and n is odd then mn is odd”. This can be proved
using a direct proof as we saw in Proposition 6.

Proving if and only if statements

Recall that if and only if statements are equivalent to the conjunction
of two implications. Thus, proving ∀x (P(x) ↔ Q(x)) is equivalent
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to proving ∀x (P(x) → Q(x)) and ∀x (Q(x) → P(x)). Therefore,
proving an if and only if statement requires proving an implication in
each direction. Let us look at an example.

Proposition 9. For any integer n, n is odd if and only if n2 is odd.

Proof. This requires us to prove two implications: “if n is odd then n2

is odd” and “if n2 is odd then n is odd”. We prove them in order, and
it is typical of the proof to have “directions” to indicate which we are
proving.

(⇒) Need to prove “if n is odd then n2 is odd”. This is exactly
what we showed in Proposition 5. We skip repeating this proof.

(⇐) Now we need to prove “if n2 is odd then n is odd”. This is
difficult to prove directly. Therefore, we will use a proof by contra-
position. The contrapositive of our statement is “if n is not odd then
n2 is not odd”. Again by using the relationship between odd and
even, we can rewrite the contrapositive as saying “if n is even then
n2 is even”. Proving this statement directly is similar to the proof of
Proposition 5. We present it here for completeness.

Suppose n is an arbitrary even integer. Then there is an integer k
such that n = 2k. Then n2 = (2k)2 = 4k2 = 2(2k2). Since k is an
integer, 2k2 is an integer, and so n2 is even.

Proof by Cases

Breaking a complicated proof into cases, and proving each case
separately, is a useful proof strategy. Let us look at an example to see
how this works.

Definition 10. For any real number x,

|x| =
{

x if x ≥ 0
−x if x < 0

Proposition 11. For any two real numbers x and y, |xy| = |x||y|.

Proof. We will prove this by cases.

x, y ≥ 0: In this case xy ≥ 0, |x| = x, and |y| = y. Thus, |xy| = xy =

|x||y|.

x, y < 0: In this case xy ≥ 0, |x| = −x, and |y| = −y. Thus, |xy| =
xy = (−x)(−y) = |x||y|.

x ≥ 0, y < 0: In this case, xy < 0, |x| = x, and |y| = −y. Thus,
|xy| = −xy = x(−y) = |x||y|.
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x < 0, y ≥ 0: This is similar to the previous case, and therefore the
proof is skipped.

Proof by Contradiction

Proof by contradiction is an indirect way to prove that a propo-
sition P holds. In such a proof, we try to establish P by proving that
if P does not hold then both R and ¬R hold, for some proposition
R. The reason why this is a sound argument is because, using truth
tables one can observe that, P ≡ ((¬P) → (R ∧ (¬R))), for any
propositions P and R. To prove ¬P → (R ∧ ¬R), we begin by assum-
ing that ¬P holds, and proceed to show that some proposition R and
its negation also hold as a consequence. The conjunction R ∧ ¬R is
said to be a contradiction. Often when writing a proof by contradic-
tion, the contradiction itself or the proposition R is not known, and
it is discovered through the process of writing the proof. Such proofs
are not always possible and tend to be a bit convoluted. Hence, direct
proofs are often prefered to a proof by contradiction. Let us look at a
classical example to illustrate this proof template.

Definition 12. A real number r ∈ R is a rational number if there are
integers a, b ∈ Z such that b 6= 0 and r = a

b . If r is a rational number,
one can assume that the integers a, b are in lowest terms, i.e., they
do not share any common factors. The set of all rational numbers is
denoted by Q.

A real number r is irrational if r is not rational.

Theorem 13.
√

2 is irrational.

Proof. Assume (for contradiction) that
√

2 is rational. Then there are
integers a, b such that b 6= 0, a, b don’t share any common factors, and

√
2 =

a
b

.

Squaring both sides and cross multiplying, we can conclude that
a2 = 2b2, and so a2 is even. From Proposition 7, this means that a is
even. Thus there is some integer k such that a = 2k. Substituting this
back, we get that

2b2 = a2 = (2k)2 = 4k2.

Or b2 = 2k2. Thus, b2 is also even. Again by Proposition 7, we can
conclude that b is even. Hence, a and b share 2 as a common factor.
But a, b were not supposed to have any common factors. Thus, we
have a contradiction. Our initial assumption that

√
2 is rational must

be false and so
√

2 is irrational.
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