Recursion and Structural Induction
Benjamin Cosman, Patrick Lin and Mahesh Viswanathan

Fall 2020

TAKE-AWAYS

* Functions and sets can be defined recursively

® Recursive function definitions are especially convenient
when the domain is a recursively-defined set

e Structural induction is a variant of induction used for
recursively-defined sets

Recursively-defined functions and sequences

Some functions and sequences are most naturally defined recursively,
i.e. in terms of themselves. For example, the Fibonacci sequence is
0,1,1,2,3,5,8,13, - - -, where the first two items are specified explic-
itly as 0 and 1, and every subsequent item is the sum of the previous
two. More formally, we can write this definition as follows:

0 whenn =0
fa=141 whenn =1

Similarly, the factorial function "!", which is defined on positive
integers as the product of the given number with all the smaller

positive integers, can be written as follows: *

1 whenn =1

n-(n—1)! whenn >2

n! =

This should look like a familiar "piecewise-defined" function,
except that some of the pieces will make "recursive calls" to the func-
tion itself. It is also very similar to how recursive functions work in
whatever programming language you are familiar with.

How NOT to write recursive functions

Like any function, a recursively-defined function f : A — B must
assign exactly one element of B to each element of A. So if we are
trying to define an f : N — IN, the following is NOT a valid defini-
tion because f(0) has no value:

* Factorial is also frequently defined on
0 using the base case that 0! = 1; we
don’t need that yet for our purposes.

RECURSION AND STRUCTURAL INDUCTION 2

3 whenn =1

fln) = n+f(n—1) whenn>2

and the following is NOT a valid definition because f(2) has two
different values:

1 whenn <2

fm = n-f(n—1) whenn>2

A more subtle version of this issue can arise for recursively-
defined functions when the recursive "calls" never actually reach a
base case, e.g. by skipping over the base case(s) or by making recur-
sive calls that don’t progress towards a base case at all. For example,
the following is NOT a valid function on any domain that includes 1,
because f(1) is defined in terms of f(—1), which is undefined:

1 whenn =0
n-f(n—2) whenn>1

fn) =

Similarly, the following is NOT valid because the recursive calls
would go on upwards forever?, so f(1) does not have any actual
value:

1 whenn =0

fin) = f(n+1) whenn>1

Recursively-defined sets

Recall that we have seen two ways of defining sets so far:

e "Roster notation", where elements are listed explicitly (e.g. {3,4,8},
or, somewhat informally because of the - - -, {0,2,4,- - - } to repre-
sent the non-negative evens).

® Set-builder notation, where we specify a rule for which elements
are included (e.g. {n € N | n is even})

Sets can also be defined using recursion. For example, here is a
different way of specifying a set S containing all the non-negative
even numbers:

"Define S recursively by

e 0€S,and

e IfaeS,a+2eS."

> more formally, the definition isn't
valid because it doesn’t specify a unique
function: any function which maps 0 to
1 and all positives to the same constant
would fit the rule described

RECURSION AND STRUCTURAL INDUCTION

The first bullet point, specifying certain initial elements in S, is
called the base case (or base step), and the second bullet point, spec-
ifying how to create more elements given ones that already exist,
is called the recursive or constructor case (or step). A recursively-
defined set contains each element specified in the base case, each
element that can be constructed by any (finite) number of applica-
tions of the constructor case, and no other elements. In this example,
0 € S because we said so explicitly, then because 0 € S,0+2=2¢€ S,
then because 2 € 5,4 € S, etc. Note that S does NOT contain any
odd numbers (there’s no way to construct an odd by adding 2 to a
member of S)

Recursive set definitions are especially useful for many datatypes
that appear in computer science, like strings and trees. Here’s a
recursive definition for the set of binary strings, which we denote
{0,1}*:

"Define {0,1}* recursively by

e Ae{0,1}*, and
e fwe {0,1}*, 0w € {0,1}* and 1w € {0,1}*."

Here A refers to the empty string,3 and writing two strings (or a
string and a character) next to each other like Ow refers to concatenat-
ing those strings, e.g. if w; = 001 and w, = 11, then wyw,; = 00111
and wyA = w1 = 001. So based on this definition, A is a string, then
because A is a string, 0A = 0 and 1A = 1 are strings, then because
0 and 1 are strings, 00, 10, 01, and 11 are strings, etc. Note that infi-
nite sequences of ones and zeros are not strings by this definition -
every finite sequence, no matter how long, can be constructed by a
finite number of applications of the constructor case, but an infinite
sequence cannot.

Recursively-defined functions are especially well suited for re-
cursively defined sets. Since every element of the set is there either
because it’s mentioned in the base step or because it’s constructed by
the constructor step, the function just has to specify how it behaves
on each of those cases. For example, here’s the string length function
|w| based on the definition of binary strings above:

0 whens = A
Is| = ¢ 1+ |w| whens=0w
1+ |w| whens = 1w

We often shorten such definitions by writing them in a compact
form like this:

3 In math we usually write strings
without quotation marks - 001 is what
we write where most programming
languages would write "001". This
generally leads to a nice-looking,
uncluttered notation, but it does have
the disadvantage that the empty string
"" would be invisible without the
quotation marks, which is why we
have to use a special notation A. So A
isn’t a character like 0 and 1; it’s just
the notation for a string that has no
characters at all.

RECURSION AND STRUCTURAL INDUCTION

Al =0
|0w| =1+ |w|
1] =1+ ful

Structural Induction

We can prove things about recursively defined objects using a variant
of induction called structural induction. To prove Vx € S(P(x)) by
structural induction (where S is a recursively defined set), you show
that P is true for each element enumerated in the base case, and then
show that it’s true for each element enumerated in the constructor
case as long as it’s true for the smaller elements used to construct x.
For example:

Theorem 1. The length of the concatenation of two binary strings is the
sum of the lengths of the individual strings, i.e. VtVs(|st| = |s| + [t]).

Proof. Fix string t, and we proceed by structural induction on s.

Base case: s = A. In this case, |st| = |At] = |t =0+ |t| = |A| 4+t =
|s| + |¢].

Inductive case 1: s = Ow. Assume as our inductive hypothesis that
|wt| = |w| + |t|. Then

[st| = |(0w)¢]
= |0(wt)| (concatenation is associative)
=1+ |wt| ((recursive) definition of length)
=1+ |w|+ |t (IH)
= |Ow| + |¢] ((recursive) definition of length)
= [s]+ [¢]

Inductive case 2: s = 1w. The proof is almost identical to the
previous case so it is omitted.

Thus by structural induction, |st| = |s| + |t| holds for every s, i.e.
Vs(|st| = |s| + |t]) is true. Then since t was arbitrary, we have proven
ViEVs(|st| = |s| + [t]). O

Structural induction is actually equivalent to normal induction,
where the induction variable #n would be the number of applications
of the constructor needed to construct s. For example, here’s the
same proof rewritten as a proof by normal induction:

Proof. Fix string t. We will prove Vn € IN(P(n)), where P(n) is the
predicate "for any s which can be constructed using n applications

4

RECURSION AND STRUCTURAL INDUCTION

of the constructor step, [st| = |s| + [t|". We proceed by induction

on n: s Base case: We need to show P(0). The only string that can be
constructed using 0 constructor steps is A, so we need to show that
fors = A, [st| = |s| + |t| holds. This is true because then |st| = |At| =
6 = 0+ [t = [A] + [#] = [s] +]

Inductive case: Fix s and fix k > 0 and assume as our inductive
hypothesis that P holds for all values smaller than k. Now we need to
show that if s can be constructed using k applications of the construc-
tor, then |st| = |s| + |t|. Since k > 0, we know that s is constructed
using at least 1 application of the constructor step, so without loss of
generality we know s = Ow. 4 Then it must be possible to construct
w using only k — 1 applications of the constructor, so the inductive
hypothesis applies to w, and we get:

[st| = |(0w)¢|
= |0(wt)| (concatenation is associative)
=1+ |wt] ((recursive) definition of length)
=14 |w|+ |t (IH)
= |Ow| + |¢] ((recursive) definition of length)
= [s]+ ¢]

Thus by induction, |st| = |s| + |t| holds for every s regardless of
the number of constructor applications required to construct s, i.e.
Vs(|st| = |s| + |t]) is true. Then since ¢ was arbitrary, we have proven
Vivs([st] = |s| + [t]). O

Note that this proof is significantly more cumbersome than the
structural induction version.

Trees

Recall that a (directed) binary tree is a tree where each vertex has

at most two children. A binary tree can be built by creating a new
root vertex and attaching it to the old roots of up to two old binary
trees. In other words, the set of (directed) binary trees can be defined
recursively as follows:

* A solitary root vertex is a binary tree.

¢ If Ty is a binary tree, then so is T; plus a new root vertex which is
a parent of T;’s former root.

e If T1 and T, are binary trees, then so is T; and T, together along
with one new root vertex which is a parent of the former roots of
Ty and T».

4 That is, it could also be 1w, but the
proof will be so similar that we omit it.

RECURSION AND STRUCTURAL INDUCTION 6

We will denote the three cases above as e, ®« — T;, and Ty — e — T,.5 51f you are using IATEX, you can typeset
Let’s define a couple functions on trees recursively. The number of this using "T_1-\bullet-T_2
vertices in a tree, v(T), is just the number of nodes in any subtrees,

plus one for the root:

v(e) =1
v(e—T) =1+0(Th)
o(Ty —e—Tp) =1+9(Ty) +0o(T2)

The height of a tree h(t) is the maximum distance from the root to
a leaf, which increases by one each time a new root is added on top:

h(e) =0
h(e —T1) =1+ h(Th)
h(Ty — e —Tp) =1+ max(h(Ty),h(T3))

(Note that in the T; — e — T, case we took the maximum height of
the two subtrees, because only the largest distance from the root to a
leaf matters.)

Now as one more example of structural induction, we prove a
(rather trivial) lower bound on the number of vertices in a tree:

Theorem 2. For any tree T, v(T) > h(T) + 1.

Proof. We proceed by structural induction on T.

Base case: T = o. Then v(T) = v(e) =1 > 0+1 = h(e)+1 =
h(T) + 1.

Inductive case 1: T = e — T}. Assume as our inductive hypothesis

e IH
that o(Ty) > h(T;) + 1. Then v(T) = v(e — T7) & 1+9(Th) >

1+ (h(Tl) + 1) —f h(O — Tl) +1= h() + 1. 6 ¢ This is a more compact way of writing

Inductive case 2: T = T; — e — Tp. Assume as our inductive a chain of (in)equalities similar to the
] one in the next case. The "def" and
hypothe51s that U(Tl) > h(Tl) +1and U(TZ) > h(TZ) + 1. Then "IH" over the (in)equality signs are like
writing "(definition)" and "(inductive
hypothesis)" next to the corresponding
() — U(Tl e — Tz) Steps.
=9(T1)+v(Tp) +1 (definition of v)
> (W(Ty) +1) + (h(Ty) +1) + 1 (TH)
=h(Th) +h(Ty) +3 (cleanup)
> h(Ty) + h(Tz) +2 3=>2)
> max(h(Ty),h(Tz)) +2 (max of two nats is < their sum)
=h(Ty —e—Tp) +1 (definition of h)
=h(T) +

RECURSION AND STRUCTURAL INDUCTION 7

Thus v(T) > h(T) + 1 in every case, induction complete.

	Recursively-defined functions and sequences
	Recursively-defined sets
	Structural Induction

