
Summations and Recurrences
Benjamin Cosman, Patrick Lin and Mahesh Viswanathan

Fall 2020

TAKE-AWAYS

• Closed forms for basic summations:

– For an arithmetic sequence a1, . . . , an with common
difference d, the corresponding arithmetic series is
∑n

i=1 ai =
n(a1+an)

2 = n(2ai+(n−1)d)
2 .

As a special case, ∑n
i=1 i = n(n+1)

2 .

– For a geometric sequence a1, . . . , an with common ratio r,
the corresonding geometric series is ∑n

i=1 ai =
a1(1−rn)

1−r .

Equivalently, ∑n−1
i=0 ari = a(1−rn)

1−r .

• Recurrences

– A recurrence is a function defined in terms of itself.

– Finding closed forms for recurrences can be done by
unrolling:

a) “Unroll” three or four times

b) Predict the form obtained after unrolling k times

c) Find the value of k that matches the base case(s)

d) Substitute the base case(s) and simplify

e) Sanity check on a few values, or, ideally, prove correct-
ness by induction

– For special recurrences of the form T(n) = aT(n
b) + f (n)

(a recursive calls and f (n) extra work), we can use the
recursion tree method. The root of the tree for T(n) has
value f (n) and a children, each of which is the root of a
(recursively constructed) recursion tree for T(n

b).

a) Draw the first few layers of the recursion tree

b) Predict the total extra work at each (internal) level

c) Compute the number of internal levels as well as the
number of leaves

d) Add up the total work at each internal level, plus the
work at the leaves

e) Simplify sums and logarithms to obtain a closed form

f) Sanity check on a few values, or, ideally, prove correct-
ness by induction

summations and recurrences 2

Summations

Consider the summation
n

∑
i=1

i2. We will consider this summation in

two ways, both related to Algorithms Analysis that we will consider
in more generality next week.

First, consider how we might implement this summation in code.
The most simple way is via a for-loop, shown in the following piece
of pseudocode:

sum-of-squares(n):

1. s = 0

2. for i from 1 to n:

3. s = s + (i * i)

4. return s

For now, let us just count the number of explicit arithmetic opera-
tions, i.e., the number of times an instance of +, -, *, or / in the block
of pseudocode gets executed. In each iteration of the for-loop, we
see one one addition and one multiplication, for a total of 2n explicit
arithmetic operations.

Question 1. Can we do better? That is, can we compute this sum
with significantly fewer explicit arithmetic operations?

While we ponder that question, let us consider the following:

unknown-function(n):

1. s = 0

2. for i from 1 to n:

3. for j from 1 to i:

4. for k from 1 to i:

5. s = s + k

6. return s

Again, let us count the number of explicit arithmetic operations.
In each iteration of the for-loop at line 4, there is one addition, so
in each iteration of the for-loop at line 3, there are i additions. As a
result, in each iteration of the for-loop at line 2, there are i2 additions.
Summing over the iterations of the for-loop in line 2, we find that the

number of additions is
n

∑
i=1

i2.

Question 2. Besides being somewhat painful to compute by hand,
formulas involving summations tend to not lend themselves eas-
ily to intuition about their values. So given a value of n, is there a
simple way to count the number of explicit arithmetic operations in
unknown-function without needing to execute sum-of-squares?

summations and recurrences 3

The answer to both questions comes in the form of the identity
n

∑
i=1

i2 =
n(n + 1)(2n + 1)

6
, which can be verified via induction.

This identity allows us to replace sum-of-squares with the follow-
ing,1 which consists of two additions, three multiplications, and one 1 Some modern compilers actually do

make these optimizations when they
are able to. For example, search for loop
or summation optimizations in LLVM.

division.
sum-of-squares-v2(n):

1. return n * (n+1) * (2*n+1) / 6

In this section, we will see how to convert some standard summa-
tions into a closed form, which is an equivalent expression that does
not involve any summations.

Example 1. Our first example will be that of an arithmetic series. An
arithmetic progression is a sequence a1, a2, . . . , an of the form ai+1 =

ai + d for 1 ≤ i < n, where d is some fixed real number. An arithmetic
series is a sum of the form ∑n

i=1 ai where a1, . . . , an is an arithmetic
progression.

We will find a closed form for an arithmetic series in terms of the
length n, the initial term a1 and the common difference d.

First, observe that a1 = a1 + (1− 1)d, and if ai = a1 + (i − 1)d,
then ai+1 = ai + d = (a1 + (i− 1)d) + d = a1 + id. So by induction,
ai = a1 + (i− 1)d for 1 ≤ i ≤ n.

Similarly, we can write an = an − 0d, and if an−i = an − id, then
an−(i+1) = an−i − d = (an − id)− d = an − (i + 1)d. So by induction,
an−i = an − id for 0 ≤ i < n.

We will now put these two observations together using a trick
commonly attributed to Gauss. Let S = ∑n

i=1 ai. The two observations
above allow us to rewrite S as

S = a1 + (a1 + d) + (a1 + 2d) + · · ·+ (an − 2d) + (an − d) + an.

We will now add S to itself, but written “backwards”:

S = a1 + (a1 + d) + (a1 + 2d) + · · · + (an − 2d) + (an − d) + an

+ S = an + (an − d) + (an − 2d) + · · · + (a1 + 2d) + (a1 + d) + a1

2S = (a1 + an) + (a1 + an) + (a1 + an) + · · · + (a1 + an) + (a1 + an) + (a1 + an)

so S =
n(a1 + an)

2
=

n(2a1 + (n − 1)d)
2

.

For the special case a1 = d = 1,
n

∑
i=1

i =
n(2 + (n− 1))

2
= n(n+1)

2 .

Example 2. Our next example will be that of a geometric series. A
geometric progression is a sequence a1, . . . , an of the form ai+1 = air for
1 ≤ i < n, where r is some fixed real number. A geometric series is a
sum of the form ∑n

i=1 ai where a1, . . . , an is a geometric progression.

summations and recurrences 4

We will find a closed form for a geometric series in terms of the
length n, the initial term a1, and the common ratio r.

Observe that a1 = a1 · r0, and if ai = a1ri−1, then ai+1 = air =

(a1ri−1)r = a1ri. So by induction, ai = a1ri−1 for 1 ≤ i ≤ n.
Set S = ∑n

i=1 ai = ∑n
i=1 a1ri−1. We will need to split into two cases.

Case 1: r = 1. ai+1 = ai · 1 = ai for 1 ≤ i < n, but then by induction
ai = a1 for 1 ≤ i ≤ n. So S = na1.

Case 2: r 6= 1. We will use a variant of Gauss’ trick: we will sub-
tract rS from S:

S = a1 + a1r + a1r2 + · · · + a1rn−2 + a1rn−1

− rS = − a1r − a1r2 − · · · − a1rn−2 − a1rn−1 − a1rn

(1− r)S = a + 0 + 0 + · · · + 0 + 0 − a1rn

so S =
a1(1 − rn)

1 − r
.

One commonly sees geometric series written in the form ∑n−1
i=0 ari.

By setting j = i + 1, we see that ∑n−1
i=0 ari = ∑n

j=1 arj−1, so plugging in

the formula derived above, we get ∑n−1
i=0 ari = a(1−rn)

1−r .

Notice that in both examples, the derivation of the closed form
involved proving something about the form of ai via induction, and
then combining the sum S with itself in a clever way. In general, if
someone hands you an expression they claim to be a closed form
(which may or may not be obtained by one of the above methods),
you can (and probably should) verify it by induction as well.

Recurrences

When working with recursively defined sets, one can often character-
ize their properties in terms of recurrences.2 2 Next week, when we look at analyzing

algorithms, we will also see that the
running time of recursive functions can
be analyzed in terms of recurrences.

Example 3. The set of boolean hypercubes3 can be constructed recur-

3 These graphs are called boolean
hypercubes due to the following al-
ternative (non-recursive) construction:
Qn is the graph whose vertices are
{0, 1}n, and there is an edge between
x̄ = (x1, . . . , xn) and ȳ = (y1, . . . , yn) if
and only if x̄ and ȳ differ on exactly one
entry.

sively as follows. First, the graph Q0 consisting one vertex and no
edges is a boolean hypercube.

Q0

Now let Qi be a boolean hypercube. We will construct a graph
Qi+1 by taking then union of Qi with a disjoint copy Q′i, and then
adding in all edges between vertices that are copies of each other.
Then Qi+1 is also a boolean hypercube. Below, for 0 ≤ i ≤ 2, we
see Qi+1 being constructed from two copies of Qi, which have been
colored orange and blue for visualization purposes:

summations and recurrences 5

Q1 Q2 Q3

Let VQ(i) = |V(Qi)| and EQ(i) = |E(Qi)|.
We know that VQ(0) = 1, and for i > 0, the vertices of Qi are two

copies of the vertices of Qi−1, i.e., VQ(i) = 2VQ(i− 1).
Similarly, we know that EQ(0) = 0, and for i > 0 the edges of Qi

are two copies of the edges of Qi−1, plus one edge for each vertex of
Qi−1, i.e., EQ(i) = 2EQ(i− 1) + VQ(i− 1).

The formulas

VQ(n) =

1 if n = 0

2VQ(n− 1) if n > 0

EQ(n) =

0 if n = 0

2EQ(n− 1) + VQ(n− 1) if n > 0

are examples of recurrences: functions whose values are defined in
terms of the same function but on smaller inputs (called recursive
calls).4 4 Recurrences where f (n) is defined in

terms of f (n− 1), called “recurrences
of the first order,” are often in the form
f (n) − f (n − 1) = g(n). This form
(correctly) suggests that such recur-
rences can be thought of as the discrete
analogue to ordinary differential equa-
tions. Here f (n) − f (n − 1) = g(n)
corresponds to the ODE d f (x)

dx = g(x).

As in the case of summations, we can ask for a closed form expres-
sion, which does not involve any recursive calls. We will also ask that
the closed form not include any summations. The motivation is the
same as before: we want something that can be evaluated relatively
quickly, as well as give more intuition than the recursive form.

We will walk through finding closed forms for some simple recur-
rences. On the other hand, if someone ever hands you an expression
they claim to be a closed form for some recurrence, you can (and
should) verify it by (structural) induction.

Unrolling

One convenient method for finding closed forms for recurrences
is called unrolling. We will illustrate the steps for this method by
example.

Example 4. You might have already guessed that since the number
of vertices doubles each time that a closed form for VQ(n) would
simply be 2n. We will see how to use the unrolling method to achieve
the same result.

a) “Unroll” three or four times:

1. VQ(n) = 2VQ(n− 1)

summations and recurrences 6

2. VQ(n) = 2VQ(n− 1) = 2(2VQ(n− 2)) = 22VQ(n− 2)

3. VQ(n) = 22VQ(n− 2) = 22(2VQ(n− 3)) = 23VQ(n− 3)

b) Predict the form obtained after unrolling k times:

k. VQ(n) = 2kVQ(n− k)

c) Find the value of k that matches the base case(s):

The base case for VQ is VQ(0) = 1. If n− k = 0, then n = k.

d) Substitute the base case(s) and simplify:

When k = n, VQ(n) = 2nVQ(0) = 2n · 1 = 2n.

e) Sanity check on a few values, or, ideally, prove correctness by
induction:5 5 Do not skip this step! It is very tempt-

ing to want to rest after previous four
steps, but in each step there are many
ways to introduce bugs into your solu-
tion.

Sanity check:

• Q0: VQ(0) = 1 = 20 3

• Q1: VQ(1) = 2 = 21 3

• Q2: VQ(2) = 4 = 22 3

• Q3: VQ(3) = 8 = 23 3

Proof by induction:

• Base case: for n = 0, VQ(0) = 1 = 20.

• Inductive case: assume for 0 ≤ i < k that VQ(i) = 2i. Then
VQ(k) = 2VQ(k− 1) = 2 · 2k−1 = 2k.

So we conclude that VQ(n) = 2n .

Let us consider another example, which does not have to do with
boolean hypercubes.

Example 5. Consider the function H defined over positive powers of
two (i.e., 2i for i > 0),

H(n) =

1 if n = 2

H(n
2) + n otherwise

We will compute a closed form for T by unrolling.

a) “Unroll” three or four times:

1. H(n) = H(n
2) + n

2. H(n) = H(n
2) + n = (H(

n
2
2) +

n
2) + n = H(n

22) + (1 + 1
2)n

3. H(n) = H(n
22) + (1 + 1

2)n = (H(
n

22
2) + n

22) + (1 + 1
2)n =

H(n
23) + (1 + 1

2 + 1
4)n

b) Predict the form obtained after unrolling k times:

summations and recurrences 7

k. H(n) = H(n
2k) + n∑k−1

i=0
1
2i

c) Find the value of k that matches the base case(s):

The base case for H is H(2) = 1. If n
2k = 2, then n = 2k+1, i.e.,

k = log2(n)− 1.

d) Substitute the base case(s) and simplify:

When k = log2(n) − 1, H(n) = H(2) + n(∑
log2(n)−2
i=0

1
2i) =

1 + n
1− 1

2log2 n−1

1
2

= 1 + 2n(1− 2
n) = 2n− 3.

e) Sanity check on a few values, or, ideally, prove correctness by
induction:6 6 Once again, do not skip this step!

When writing these notes, I introduced
errors more than once, and they were
caught precisely because of this step.

Sanity check:

• H(2) = 1 = 2(2)− 3 3

• H(4) = H(2) + 4 = 5 = 2(4)− 3 3

• H(8) = H(4) + 8 = 13 = 2(8)− 3 3

So we conclude that H(n) = 2n− 3 .

Recursion Trees

For recurrences of the form

T(n) =

g(n) n is a base case

aT(n
b) + f (n) otherwise

where a, b are integers and (for simplicity) n is a power of b, another
useful method for finding closed forms is the recursion tree method.

In this method, we will say that T(n) consists of a recursive calls
to T(n

b) and f (n) extra work. As for the recursion tree itself, the
root has value f (n) and a children, each of which is the root of a
(recursively constructed) recursion tree for T(n

b). When T(n
b) hits one

of the base cases, we get a leaf whose value is simply g(n
b).

As before, we will illustrate this method by example.

Example 6. Consider the following recurrence, defined for powers of
two that are at least four:

S(n) =

c if n = 4

4S(n
2) + dn otherwise

We will compute a closed form for A by recursion trees.

a) Draw the first few layers of the recursion tree:

For S, a = 4, b = 2, and f (n) = dn, so the first few levels of the
recursion tree are as follows:

summations and recurrences 8

dn

dn
2

dn
2

dn
2

dn
2

dn
4

· · ·

dn
4

· · ·

dn
4

· · ·

dn
4

· · ·

dn
4

· · ·

dn
4

· · ·

dn
4

· · ·

dn
4

· · ·

dn
4

· · ·

dn
4

· · ·

dn
4

· · ·

dn
4

· · ·

dn
4

· · ·

dn
4

· · ·

dn
4

· · ·

dn
4

· · ·

b) Predict the total amount of extra work at each (internal) level:

In the recursion tree for S, the first few levels sum to dn, 2dn, and
4dn. We will predict that at level k, the extra works sums to 2kdn.

dn

dn
2

dn
2

dn
2

dn
2

dn
4

· · ·

dn
4

· · ·

dn
4

· · ·

dn
4

· · ·

dn
4

· · ·

dn
4

· · ·

dn
4

· · ·

dn
4

· · ·

dn
4

· · ·

dn
4

· · ·

dn
4

· · ·

dn
4

· · ·

dn
4

· · ·

dn
4

· · ·

dn
4

· · ·

dn
4

· · ·

level 0: dn

level 1: 4 · dn
2 = 2dn

level 2: 16 · dn
4 = 4dn

level k: 2kdn

c) Compute the number of internal levels as well as the number of
leaves:

For S, a vertex is at level k if it corresponds to a call to S(n
2k), and

a vertex is a leaf if it corresponds to S(4). Thus the leaves are at
level h where n

2h = 4, i.e., h = log2(n) − 2. This happens to be
the height of the tree, and all leaves are at level log2(n)− 2. The
internal levels are thus 0 through log2(n)− 3.

We can see that the number of vertices at level k is 4k, so the num-
ber of leaves is 4log2(n)−2.

d) Add up the total work at each internal level, plus the work at the
leaves:

S(n) =

internal work︷ ︸︸ ︷
log2(n)−3

∑
k=0

2kdn+

leaf work︷ ︸︸ ︷
4log2(n)−2c

e) Simplify any sums and logarithms to obtain a closed form:

summations and recurrences 9

Using the formula for geometric series

log2(n)−3

∑
k=0

2kdn = dn
log2(n)−3

∑
k=0

2k

= dn · 2log2(n)−2 − 1
2− 1

= dn ·
(

2log2(n)−2 − 1
)

.

Then using the exponent rule ab+c = abac and logarithm rule
aloga(b) = b, we can simplify

2log2(n)−2 =
2log2(n)

4
=

n
4

.

Next, using the exponent rule ab+c = abac and logarithm rule
alogb(c) = clogb(a), we can simplify

4log2(n)−2 =
4log2(n)

16
=

nlog2 4

16
=

n2

16
.

Putting everything together, S(n) = dn(n
4 − 1) + cn2

16 .

f) Sanity check on a few values, or, ideally, prove correctness by
induction:

Sanity check:

• S(4) = c = 4d(4
4 − 1) + c · 42

16 3

• S(8) = 4S(4) + 8d = 8d + 4c = 8d(8
4 − 1) + c · 82

16 3

• S(16) = 4S(8) + 16d = 48d + 16c = 16d(16
4 − 1) + c · 162

16 3

In summary, S(n) = dn
(n

4 − 1
)
+ cn2

16 .

	Summations
	Recurrences

