
Worksheet on Algorithm analysis and Big O
Benjamin Cosman, Patrick Lin and Mahesh Viswanathan

Fall 2020

TAKE-AWAYS

• f (n) is O(g(n)) if there are positive c, k such that for every
n ≥ k, f (n) ≤ c · g(n).

• Informally, f (n) is O(g(n)) if, as long as you ignore small
inputs and constant factors, f (n) ≤ g(n).

• The following simple functions form a strictly increasing
hierarchy for big-O:
1, log(n), n, n log(n), n2, n3, ..., 2n, 3n, ..., n!.

• We say f (n) is Θ(g(n)) if f (n) is O(g(n)) and g(n) is
O(f (n))

• Dominant Term Method: If
f (n) = g1(n) + g2(n) + ... + gk(n) and g1(n) is the
dominant term (grows the fastest for large n; all other
gi(n) are O(g1(n))), then f (n) is Θ(g1(n))

• The run time of an algorithm is expressed as a function
T(n) whose value is the worst-case run time for inputs of
size n.

• Usually, an algorithm with (nested) loops will have a run
time that is most easily expressed as a summation and a
recursive algorithm will have a run time most easily
expressed as a recurrence. Both can be simplified to closed
forms (e.g. with unrolling or recursion trees), which are
then frequently simplified further using big-O notation.

Problem 1.

a) Prove that 2n is O(n!). (Apply the definition of big-O; do not just
appeal to our hierarchy of common functions.)

b) Prove or disprove the following: If f (n) is O(2n) and g(n) is O(n!)
then f (n) is O(g(n))

worksheet on algorithm analysis and big o 2

Problem 2. In lecture we saw two sorting algorithms with (worst-
case) run times Θ(n2) and Θ(n log(n)) (where n is the length of
the input array). A friend tells you that they’ve heard of an even
better algorithm with (worst-case) run time Θ(log(n)). Convince
your friend that such an algorithm cannot exist. 1 1 Hint: Come up with some bare min-

imum amount of work that every
sorting algorithm must do.

Problem 3. In this problem we partially justify the Dominant Term
Method by proving that it works for a sum of two terms. We first also
show that it does not work for products, only sums.

a) Let f (n) = g(n) · h(n), where g(n) is a "dominant factor" in the
product, i.e. h(n) is O(g(n)). Prove that f (n) is not necessarily
O(g(n)).

b) Let f (n) = g(n) + h(n), where g(n) is a dominant term in the
sum, i.e. h(n) is O(g(n)). Prove that f (n) is O(g(n)).

worksheet on algorithm analysis and big o 3

Problem 4. Consider the following algorithm, presented in pseu-
docode, which multiplies two nxn matrices that are in row-echelon
form2: 2 The only important fact about row-

echelon form is that entries below the
diagonal are all zeros, which allows us
to optimize the for-loop bounds instead
of making them all 1 to n.

Row-Echelon Square Matrix Multiplier

1. RESMatrixMul(A, B):

2. answer = nxn all-zeros matrix

3. for each i from 1 to n:

4. for each j from i to n:

5. for each k from i to j:

6. answer[i][j] += A[i][k] * B[k][j]

7. return answer

a) What is the run time in terms of n? You may assume that line
6 takes a constant amount of time, and the run time of all other
lines is negligible.

b) The way we define the "size" of the input will affect the expres-
sion we compute for the run time. What is the run time of RES-
MatrixMul in terms of r, where r = n2 is the number of elements in
each of the two input matrices?

