Induction worksheet

Benjamin Cosman, Patrick Lin and Mahesh Viswanathan Fall 2020

TAKE-AWAYS

- *Induction* is a proof technique where to prove $\forall n \geq 0(P(n))$, you first prove P(0) (the *base case*) and then prove $\forall k > 0((P(0) \land P(1) \land ... \land P(k-1)) \rightarrow P(k))$ (the *inductive case*)
- Sometimes you may need multiple base cases and/or a base case that isn't 0.
- Common errors in proofs by induction include omitting the base case, reversing the implication, writing an inductive step that fails for certain values, and using a P(n) that isn't a predicate.

Problem 1. Solve Problem 5.16 parts (a)-(f) from our MCS textbook.

Problem 2. Solve Problem 5.23 from our MCS textbook.

Problem 3. Recall that one of de Morgan's Laws states $\neg(x \lor y) \equiv (\neg x) \land (\neg y)$. Fill in the template below to prove the following *generalized* de Morgan's Law:

For any
$$n \geq 2$$
, $\neg(x_1 \lor x_2 \lor ... \lor x_n) \equiv (\neg x_1) \land (\neg x_2) \land ... \land (\neg x_n)$

Proof. Define P(n) to be "_____". We proceed by induction on n.

Base case: We need to prove $P(___)$. It's true because _____
Inductive case: Fix k>_____, and assume as our inductive hypothesis that P holds for each i from ______ to k-1. Now we need to prove P(k), which we do as follows: _____.

Induction complete. □

Problem 4. Be careful of things you find on the internet! The first relevant result of an "induction examples" Google search (www. mathsisfun.com/algebra/mathematical-induction.html) uses a different template than ours - instead of using $P(0) \wedge P(1) \wedge ... \wedge P(k-1)$ to prove P(k) in the inductive step, they're using P(k) to prove P(k+1). However even if they had been written with our template, every proof on that page would still have a problem:

a) What rather minor issue does the first proof (that $3^n - 1$ is always a multiple of 2) have?²

¹ In this class, we only use what they would call "strong induction".

² Hint: What's P(n)?

- b) What much more serious error do all the other proofs have?³
- c) Prove by induction that $\forall n \ge 1(1+3+5+...+(2n-1)=n^2)$. (You may use the flawed proof on that website for guidance, but don't repeat their flaw, and make sure you use our template instead of theirs.)

Problem 5. The first two Fibonacci numbers are defined to be $F_0 = 0$ and $F_1 = 1$, and each subsequent number is the sum of the previous two, i.e. $F_2 = F_1 + F_0$, and in general $\forall n > 1$, $F_n = F_{n-1} + F_{n-2}$. So the first several are 0, 1, 1, 2, 3, 5, 8, 13.... Prove the following:

$$\forall n \geq 1 (F_n \geq (3/2)^{n-2})$$

³ Hint: It's one of the 4 common errors discussed in the "Bogus induction proofs" section of the notes.