NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) Use (strong) induction to prove the following claim:

Claim:
$$\sum_{p=1}^{n} \frac{p}{p+1} \le \frac{n^2}{n+1}$$
 for all positive integers n .

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Name:												
NetID:				Lecture: A				В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(15 points) U	Jse (strong) induc	etion to prov	e the	follow	ing cla	im:						
Claim: $(2n)$	$ 1 ^2 < (4n)!$ for all	positive into	egers.									
Proof by indu	ection on n .											
Base case(s)	:											
Inductive H	ypothesis [Be sp	pecific, don't	just	refer to	o "the	claim'	']:					

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) The operator \prod is like \sum except that it multiplies its terms rather than adding them. So e.g. $\prod_{p=3}^{5} (p+1) = 4 \cdot 5 \cdot 6$. Use (strong) induction to prove the following claim:

Claim: For any positive integer n and any reals a_1, \ldots, a_n between 0 and 1 (inclusive)

$$\prod_{p=1}^{n} (1 - a_p) \ge 1 - \sum_{p=1}^{n} a_p$$

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Lecture: \mathbf{A} \mathbf{B}

Friday $\mathbf{2}$ 3 Discussion: Thursday **10** 11 **12** 1 6 4 5

(15 points) Use (strong) induction to prove the following claim.

Claim: For any positive integer n, $\sum_{p=1}^{n} \frac{(-1)^{p-1}}{p} > 0$

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step: Hint: divide into cases based on whether k is even or odd. Consider removing more than term from the summation in one case.

 \mathbf{B}

Name:_____

NetID:_____ Lecture: A

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) Use (strong) induction to prove the following claim:

Claim: $\frac{(2n)!}{n!n!} > 2^n$, for all integers $n \geq 2$

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Name:												
NetID:			_	Lecture:			\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(15 points) U	Jse (strong) induc	ction to prov	e the	follow	ing cla	im:						
Claim: For	any natural numb	per n and an	ıy rea	l numb	er x , w	here 0	< x	< 1, (1-x	$)^n \ge$	1-n	<i>x</i> .
Let x be a real	al number, where	0 < x < 1.										
Proof by indu	action on n .											
Base case(s)):											
Inductive H	ypothesis [Be sp	pecific, don't	just	refer t	o "the	claim'	']:					

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) Use (strong) induction to prove the following claim:

Claim:
$$\sum_{p=1}^{n} \frac{1}{p} \leq \frac{n}{2} + 1$$
, for any positive integer n .

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step: Hint: recall that if $x \leq y$, then $\frac{1}{y} \leq \frac{1}{x}$

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) The operator \prod is like \sum except that it multiplies its terms rather than adding them. So e.g. $\prod_{p=3}^{5} (p+1) = 4 \cdot 5 \cdot 6$. Use (strong) induction to prove the following claim:

Claim: For any positive integer n and any positive reals a_1, \ldots, a_n ,

$$\prod_{p=1}^{n} (1 + a_p) \ge 1 + \sum_{p=1}^{n} a_p$$

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: