NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) Use (strong) induction to prove the following claim:

Claim:
$$\sum_{p=1}^{n} \frac{p}{p+1} \le \frac{n^2}{n+1}$$
 for all positive integers n .

Solution:

Proof by induction on n.

Base Case(s): At
$$n = 1$$
, $\sum_{p=1}^{n} \frac{p}{p+1} = \frac{1}{2}$ and $\frac{n^2}{n+1} = \frac{1}{2}$. So the claim holds at $n = 1$.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that
$$\sum_{p=1}^{n} \frac{p}{p+1} \le \frac{n^2}{n+1}$$
 for $n = 1, \dots, k$.

Inductive Step:

First, let's prove the following lemma: $\frac{k^2}{k+1} \le \frac{k(k+1)}{k+2}$.

Proof of lemma: Notice that $k(k+2) = k^2 + 2k \le k^2 + 2k + 1 = (k+1)^2$. So $k(k+2) \le (k+1)^2$. So (since k is positive) $\frac{k}{k+1} \le \frac{k+1}{k+2}$. So $\frac{k^2}{k+1} \le \frac{k(k+1)}{k+2}$.

Now by the inductive hypothesis $\sum_{p=1}^k \frac{p}{p+1} \leq \frac{k^2}{k+1}$ So

$$\sum_{p=1}^{k+1} \frac{p}{p+1} = \frac{k+1}{k+2} + \sum_{p=1}^{k} \frac{p}{p+1}$$

$$\leq \frac{k+1}{k+2} + \frac{k^2}{k+1} \leq \frac{k+1}{k+2} + \frac{k(k+1)}{k+2}$$

$$= \frac{k^2 + 2k + 1}{k+2} = \frac{(k+1)^2}{k+2}$$

So $\sum_{p=1}^{k+1} \frac{p}{p+1} \le \frac{(k+1)^2}{k+2}$ which is what we needed to show.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) Use (strong) induction to prove the following claim:

Claim: $(2n)!^2 < (4n)!$ for all positive integers.

Solution:

Proof by induction on n.

Base Case(s): At
$$n = 1$$
, $(2n)!^2 = (2!)^2 = 2^2 = 4$ And $(4n)! = 4! = 24$.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $(2n)!^2 < (4n)!$ for n = 1, 2, ..., k.

Inductive Step: At n = k + 1, we have

$$(2(k+1))!^2 = (2k+2)!^2 = [(2k+2)(2k+1)(2k!)]^2 = (2k+2)(2k+2)(2k+1)(2k+1)(2k)!^2$$

Also $(4(k+1))! = (4k+4)! = (4k+4)(4k+3)(4k+2)(4k+1)(4k)!$

Also notice that (2k+2)(2k+1)(2k+1)(2k+1) < (4k+4)(4k+3)(4k+2)(4k+1) because each of the four terms on the left is smaller than the four terms on the right.

From the inductive hypothesis, we know that $(2k)!^2 < (4k)!$.

Putting this all together, we get

$$(2(k+1))!^{2} = (2k+2)(2k+2)(2k+1)(2k+1)(2k)!^{2}$$

$$< (2k+2)(2k+2)(2k+1)(2k+1)(4k)!$$

$$< (4k+4)(4k+3)(4k+2)(4k+1)(4k)!$$

$$= (4(k+1))!$$

So $(2(k+1))!^2 < (4(k+1))!$, which is what we needed to prove.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) The operator \prod is like \sum except that it multiplies its terms rather than adding them. So e.g. $\prod_{p=3}^{5} (p+1) = 4 \cdot 5 \cdot 6$. Use (strong) induction to prove the following claim:

Claim: For any positive integer n and any reals a_1, \ldots, a_n between 0 and 1 (inclusive)

$$\prod_{p=1}^{n} (1 - a_p) \ge 1 - \sum_{p=1}^{n} a_p$$

Solution:

Proof by induction on n.

Base Case(s): At n = 1, $\prod_{p=1}^{n} (1 - a_p) = 1 - a_1$ and $1 - \sum_{p=1}^{n} a_p = 1 - a_1$ so $\prod_{p=1}^{n} (1 - a_p) \ge 1 - \sum_{p=1}^{n} a_p$.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $\prod_{p=1}^{n} (1 - a_p) \ge 1 - \sum_{p=1}^{n} a_p$ for n = 1, ..., k and any real numbers $a_1, ..., a_n$ between 0 and 1 (inclusive).

Inductive Step: Let a_1, \ldots, a_{k+1} be real numbers between 0 and 1 (inclusive). By the inductive hypothesis, we know that $\prod_{p=1}^k (1-a_p) \ge 1 - \sum_{p=1}^k a_p$. Since $(1-a_{k+1})$ is positive, this means that $(1-a_{k+1}) \prod_{p=1}^k (1-a_p) \ge (1-a_{k+1}) (1-\sum_{p=1}^k a_p)$. Then we have

$$\prod_{p=1}^{k+1} (1 - a_p) = (1 - a_{k+1}) \prod_{p=1}^{k} (1 - a_p)$$

$$\geq (1 - a_{k+1}) (1 - \sum_{p=1}^{k} a_p) = 1 - a_{k+1} + a_{k+1} \sum_{p=1}^{k} a_p - \sum_{p=1}^{k} a_p$$

$$\geq 1 - a_{k+1} - \sum_{p=1}^{k} a_p \text{ because all values } a_p \text{ are positive}$$

$$= 1 - \sum_{p=1}^{k+1} a_p$$

So $\prod_{p=1}^{k+1} (1-a_p) \ge 1 - \sum_{p=1}^{k+1} a_p$, which is what we needed to show.

CS 173, Spring 19

Examlet 10, colored

4

Name:_____

NetID: Lecture: Α \mathbf{B}

2 3 Discussion: Thursday Friday 9 10 11 **12** 1 4 6 5

(15 points) Use (strong) induction to prove the following claim.

Claim: For any positive integer n, $\sum_{n=1}^{n} \frac{(-1)^{p-1}}{p} > 0$

Solution:

Proof by induction on n.

Base Case(s): At n = 1, $\sum_{p=1}^{n} \frac{(-1)^{p-1}}{p} = 1 > 0$. So the claim holds. At n = 2, $\sum_{p=1}^{n} \frac{(-1)^{p-1}}{p} = 1 - 1/2 = 1/2 > 0$. So the claim holds.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $\sum_{p=1}^{n} \frac{(-1)^{p-1}}{p} > 0$ for n = 1, 2, ..., k.

Inductive Step: There are two cases:

Case 1) k is even.

$$\sum_{p=1}^{k+1} \frac{(-1)^{k-1}}{k} = \frac{(-1)^k}{k+1} + \sum_{p=1}^k \frac{(-1)^{p-1}}{p}.$$

From the inductive hypothesis, we know that $\sum_{p=1}^k \frac{(-1)^{p-1}}{p}$ is positive. Since k is even, we know that $\frac{(-1)^k}{k+1}$ is positive. Since $\sum_{p=1}^{k+1} \frac{(-1)^{p-1}}{p}$ is the sum of two positive numbers, it must be positive.

Case 2) k is odd. Then remove two terms from the summation:

$$\textstyle \sum_{p=1}^{k+1} \frac{(-1)^{p-1}}{p} = \frac{(-1)^{k-1}}{k} + \frac{(-1)^k}{k+1} + \sum_{p=1}^{k-1} \frac{(-1)^{p-1}}{p}.$$

From the inductive hypothesis, we know that $\sum_{p=1}^{k-1} \frac{(-1)^{p-1}}{p}$ is positive. Since k is odd, $\frac{(-1)^{k-1}}{k} + \frac{(-1)^k}{k+1} = \frac{1}{k} + \frac{1}{k+1} = \frac{1}{k} - \frac{1}{k+1}$. Since $\frac{1}{k}$ is larger than $\frac{1}{k+1}$, $\frac{1}{k} - \frac{1}{k+1}$ is positive. Since $\sum_{p=1}^{k+1} \frac{(-1)^{p-1}}{p}$ is the sum of two positive numbers, it must be positive.

In both cases, we have show that $\sum_{p=1}^{k+1} \frac{(-1)^k}{k+1} > 0$, which is what we needed to show.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) Use (strong) induction to prove the following claim:

Claim: $\frac{(2n)!}{n!n!} > 2^n$, for all integers $n \ge 2$

Solution:

Proof by induction on n.

Base Case(s): At n=2, $\frac{(2n)!}{n!n!}=\frac{4!}{2!2!}=\frac{24}{4}=6>4=2^n$.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $\frac{(2n)!}{n!n!} > 2^n$, for n = 2, ..., k.

Inductive Step: By the inductive hypothesis, $\frac{(2k)!}{k!k!} > 2^k$.

Also notice that 2k + 1 > k + 1 because $k \ge 0$. So $\frac{2k+1}{k+1} > 1$.

Then we can compute

$$\frac{(2(k+1))!}{(k+1)!(k+1)!} = \frac{(2k+2)(2k+1)(2k)!}{(k+1)k!(k+1)k!} = \frac{(2k+2)(2k+1)}{(k+1)^2} \frac{(2k)!}{k!k!}$$

$$> \frac{(2k+2)(2k+1)}{(k+1)^2} 2^k$$

$$= \frac{(k+1)(2k+1)}{(k+1)^2} 2^{k+1} = \frac{2k+1}{k+1} 2^{k+1} > 2^{k+1}$$

So $\frac{(2(k+1))!}{(k+1)!(k+1)!} > 2^{k+1}$, which is what we needed to show.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) Use (strong) induction to prove the following claim:

Claim: For any natural number n and any real number x, where 0 < x < 1, $(1-x)^n \ge 1 - nx$.

Let x be a real number, where 0 < x < 1.

Solution:

Proof by induction on n.

Base Case(s): At n = 0, $(1 - x)^n = (1 - x)^0 = 1$ and 1 - nx = 1 + 0 = 1. So $(1 - x)^n \ge 1 - nx$.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that $(1-x)^n \ge 1 - nx$ for any natural number $n \le k$, where k is a natural number.

Inductive Step: By the inductive hypothesis $(1-x)^k \ge 1 - kx$. Notice that (1-x) is positive since 0 < x < 1. So $(1-x)^{k+1} \ge (1-x)(1-kx)$.

But
$$(1-x)(1-kx) = 1-x-kx+kx^2 = 1-(1+k)x+kx^2$$
.

And $1 - (1+k)x + kx^2 \ge 1 - (1+k)x$ because kx^2 is non-negative.

So $(1-x)^{k+1} \ge (1-x)(1-kx) \ge 1-(1+k)x$, and therefore $(1-x)^{k+1} \ge 1-(1+k)x$, which is what we needed to show.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) Use (strong) induction to prove the following claim:

Claim:
$$\sum_{p=1}^{n} \frac{1}{p} \leq \frac{n}{2} + 1$$
, for any positive integer n .

Solution:

Proof by induction on n.

Base Case(s): At n=1, $\sum_{p=1}^{n} \frac{1}{p} = 1$. Also $\frac{n}{2} + 1 = 1.5$, which is larger. So the claim holds.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that
$$\sum_{n=1}^{n} \frac{1}{p} \leq \frac{n}{2} + 1$$
, for $n = 1, \dots, k$.

Inductive Step: In particular, by the inductive hypothesis, $\sum_{p=1}^k \frac{1}{p} \leq \frac{k}{2} + 1$. Also notice that k is positive, so $k+1 \geq 2$, and therefore $\frac{1}{k+1} \leq \frac{1}{2}$. Thus $\frac{1}{k+1} - \frac{1}{2} \leq 0$. So

$$\sum_{p=1}^{k+1} \frac{1}{p} = \frac{1}{k+1} + \sum_{p=1}^{k} \frac{1}{p} \leq \frac{1}{k+1} + \frac{k}{2} + 1$$

$$= (\frac{k+1}{2} - \frac{k+1}{2}) + (\frac{1}{k+1} + \frac{k}{2} + 1) \qquad \text{based on backwards scratch work}$$

$$= (\frac{k+1}{2} + 1) + \frac{1}{k+1} + (\frac{k}{2} - \frac{k+1}{2}) \qquad \text{rearrange terms}$$

$$= (\frac{k+1}{2} + 1) + \frac{1}{k+1} - \frac{1}{2}$$

$$\leq \frac{k+1}{2} + 1 \qquad \text{because } \frac{1}{k+1} - \frac{1}{2} \leq 0$$

So $\sum_{p=1}^{k+1} \frac{1}{p} \leq \frac{k+1}{2} + 1$, which is what we needed to show.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) The operator \prod is like \sum except that it multiplies its terms rather than adding them. So e.g. $\prod_{p=3}^{5} (p+1) = 4 \cdot 5 \cdot 6$. Use (strong) induction to prove the following claim:

Claim: For any positive integer n and any positive reals a_1, \ldots, a_n ,

$$\prod_{p=1}^{n} (1 + a_p) \ge 1 + \sum_{p=1}^{n} a_p$$

Solution:

Proof by induction on n.

Base Case(s): At n = 1, $\prod_{p=1}^{n} (1+a_p) = 1+a_1$ and $1+\sum_{p=1}^{n} a_p = 1+a_1$ so $\prod_{p=1}^{n} (1+a_p) \ge 1+\sum_{p=1}^{n} a_p$.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $\prod_{p=1}^{n} (1 + a_p) \ge 1 + \sum_{p=1}^{n} a_p$ for n = 1, ..., k and any positive real numbers $a_1, ..., a_n$.

Inductive Step: Let a_1, \ldots, a_{k+1} be positive real numbers. By the inductive hypothesis, we know that $\prod_{p=1}^k (1+a_p) \ge 1 + \sum_{p=1}^k a_p$. Then we have

$$\prod_{p=1}^{k+1} (1+a_p) = (1+a_{k+1}) \prod_{p=1}^{k} (1+a_p)$$

$$\geq (1+a_{k+1})(1+\sum_{p=1}^{k} a_p) = 1+a_{k+1}+a_{k+1} \sum_{p=1}^{k} a_p + \sum_{p=1}^{k} a_p$$

$$\geq 1+a_{k+1}+\sum_{p=1}^{k} a_p \text{ because all values } a_p \text{ are positive}$$

$$= 1+\sum_{p=1}^{k+1} a_p$$

So $\prod_{p=1}^{k+1} (1+a_p) \ge 1 + \sum_{p=1}^{k+1} a_p$, which is what we needed to show.