expression be made true by appro-

priate choice of input values.

Name: NetID: Lecture: \mathbf{B} 3 Thursday Discussion: Friday 9 **10** 11 **12** 1 2 6 4 5 (15 points) Check the (single) box that best characterizes each item. Algorithm A takes $\log_2 n$ time. On x+12xone input, A takes x time. How long will it take if I double the input size? $\Theta(n \log n)$ T(1) = cT(n) = 4T(n/2) + n $\Theta(n^{\log_3 2})$ The running time of binary search is false ${\rm true}$ $O(n \log n)$. For a problem to satisfy the definition of NP, a "yes" answer must have a succinct justification. false true Deciding whether an input logic

polynomial

exponential

in NP

Name:												
NetID:			_	$L\epsilon$	ectur	\mathbf{A}	В					
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(15 points) Cl	heck the (single)	box that be	st cha	racteri	zes eac	ch iten	n.					
Karatsuba's in multiplication algorithm	nteger	$\log n$) $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	$\Theta(n)$ $\Theta(n^{\mathrm{l}}$			$\Theta(n \log \Theta(n^{\log n}))$	- /	<u></u> ✓	$\Theta(n)$,		
T(1) = d $T(n) = 2T(n/2)$	$\Theta(\log 4) + n$ $\Theta(n^2)$		$\Theta(\sqrt{n})$			_	<u> </u>	$\Theta(n \log 3^n)$	g n)			
	time of merge is effined by $T(1)$	= d and	7 27	$\Gamma(n-1)$	1) + c $1) + c$	$\sqrt{}$		T(n - T(n)				
Circuit satist solved in poly	v	true [fals	е] :	not kı	nown	V	′		
-	n to satisfy the d			*	rue [fa	lse				

Name:												
NetID:			_	Lecture: A B								
Discussion: (15 points) Ch	Thursday neck the (single)	Friday box that be	9 st cha	10	11 izes ea	$oldsymbol{12}{ ext{ch item}}$	1	2	3	4	5	6
The running to of merge	ime $\Theta(1-\Theta(r))$	$\log n$) \square	$\Theta(n)$ $\Theta(n^{l})$) $\log_3 2$	√	$\Theta(n \log \Theta(n^{\log n}))$	_ /		$\Theta(r)$ $\Theta(2)$	· -		
T(1) = d $T(n) = T(n - 1)$	$1) + n \qquad \Theta(n)$ $\Theta(n^{lo})$		$\Theta(n \mathbf{l})$ $\Theta(n^{\mathbf{l}})$	- /		$\Theta(n^2)$ $\Theta(2^n)$		J	n^3) 3^n)			
T(1) = d $T(n) = 2T(n/2)$	$\Theta(n)$ $\Theta(n^{\text{lo}})$	==	$\Theta(n)$ $\Theta(n^1)$	$\log n$) $\log_2 3$)		$\Theta(n^2)$ $\Theta(2^n)$		Ť `	n^3) 3^n)			
The solution t Hanoi puzzle requires $\Theta(2^n)$		true 🗸	/	false		not	knov	vn [
	c number of a gr found in polynon	-		rue [false]	not k	nown	ı <u>v</u>	<u>/</u>

Name:												
NetID:			_	Lecture:		e:	\mathbf{A}	\mathbf{B}				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
of integers sorted	ill in the missing in increasing ord d cons (adds num	der. Use the										
$Merge(L_1, L_2)$	2: sorted lists of	real number	s)									
if (L_1)	is empty and L_2	is empty) re	au au au	emptyl	ist							
else if	$(L_2 \text{ is empty or f})$	$\operatorname{irst}(L_1) <=$	first($(L_2))$								
Solu	tion: return cons	$s(\operatorname{first}(L_1), \operatorname{m})$	erge(:	$\operatorname{rest}(L_1$	$(1,L_2)$							
else] ¬		
Solu	tion: return con	$\operatorname{ns}(\operatorname{first}(L_2), \operatorname{r})$	nerge	$(L_1, \operatorname{res}$	$\operatorname{st}(L_2))$)						
										_		
(9 points) Che	eck the (single) b	ox that best	char	acteriz	es eacl	n item						
T(1) = d $T(n) = 3T(n)$	$\Theta(n)$ $\Theta(n)$ $\Theta(n^{\ln n})$	<u> </u>		$\log n$) $\log_2 3$)		$\Theta(n^2)$ $\Theta(2^n)$		7	(n^3) (3^n)			
The Towers of requires expon	f Hanoi puzzle nential time.	true [$\sqrt{}$	fals	se		not k	nown]		
_	hromatic number requires $\Theta(2^n)$ ti	~ -	${f t}$	rue [false			not k	nown	n ,	/

The Towers of Hanoi puzzle can be solved in polynomial time.

not known

6

Name:											
NetID:			_	Le	ectur	A	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5
(15 points) Cl	heck the (single)	box that bes	st cha	racteri	izes ea	ch item	1.				
_	ime of Karatsuba defined by $T(1)$	0		$\Gamma(n/2)$ $\Gamma(n/2)$				4T(n/2)			<u>√</u>
T(1) = d $T(n) = 2T(n + 1)$	$-1) + c \qquad \Theta(n)$ $\Theta(n^{l_0})$	$\log_3 2$)	$\Theta(n)$ $\Theta(n^{\text{lo}})$	$\log n$) $\log_2 3$)		$\Theta(n^2)$ $\Theta(2^n)$	√	-	(n^3) (3^n)		
~	time of the Towersively defined by		27	$\Gamma(n-1)$ $2T(n/2)$	1) + c $2) + c$	√ 	2	T(n - 2T(n))			
_	n to satisfy the der must have a such				true [fa	alse			

false

true

Name:											
NetID:			. L	В							
Discussion:	Thursday	Friday	9 10	11	12	1	2	3	4	5	6
(15 points) C	heck the (single)	box that bes	t character	rizes eac	h iten	1.					
Adding eleme start of array gets longer)			$(\log n)$ (n^3)		· —	'	$\Theta(n \log 3^n)$	g(n)			
T(1) = d $T(n) = 3T(n)$	$\Theta(n)$ $\Theta(n)$ $\Theta(n^{1}$		$\Theta(n \log n)$ $\Theta(n^{\log_2 3})$	✓	$\Theta(n^2)$ $\Theta(2^n)$		=	(n^3)			
T(1) = c $T(n) = 2T(n)$	$\Theta(n)$ $\Theta(n)$ $\Theta(n^{l_1}$		$\Theta(n \log n)$ $\Theta(n^{\log_2 3})$		$\Theta(n^2)$ $\Theta(2^n)$		7	(n^3)			
Problems in certain exponential ti	elass NP require	tru	е	false		no	ot kno	own			
The Marker N solved in poly	faking problem ca nomial time.	n be tru	e	false		no	ot kno	own			

Name:												
NetID:			Lecture: A E									
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(15 points) Cl	heck the (single)	box that best	char	acteri	zes eac	ch iten	1.					
T(1) = d $T(n) = T(n/3)$	$\Theta(\log B) + c$ $\Theta(n^2$	*	$\Theta(\sqrt{n})$	(i)		´		$\Theta(n \log 3^n)$	g(n)			
Dividing a linhalf	nked list in $\Theta(1)$		$(\log n)$)	$\begin{array}{c} \Theta(r) \\ \Theta(2r) \end{array}$	· -		$\Theta(n \log 3^n)$	$\log n)$			
_	time of the Towersively defined by				2) + c $1) + c$		2	2T(n-1)	e/2) - - 1) -	+ cn + cn		
Producing all for a sentence	•	polynomi	ial [exp	onenti	al	$\sqrt{}$	in	NP		
The Travelling	g Salesman	polynomi	ial [exp	onenti	al		in	NP		

Name:												
NetID:				Lecture: A B								
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(15 points) C	heck the (single)	box that bes	t cha	racteri	zes eac	h item	1.					
T(1) = d $T(n) = T(n/2)$	$\Theta(\log 2) + n$ $\Theta(n^2)$		$\Theta(\sqrt{n})$	() [´ -	 /	$\Theta(n \log 3^n)$	g(n)			
input, A takes	takes 2^n time. Constant x time. How lone to the input	x - y	+2		2x	V	2^x			x^2		
T(1) = d $T(n) = 3T(n)$	$\Theta(n)$ $\Theta(n^{\ln n})$	===	$\Theta(n \operatorname{l}$ $\Theta(n^{\operatorname{lo}}$	$\log n$) $\log_2 3$)	$\boxed{\hspace{0.2cm}}$	$\Theta(n^2)$ $\Theta(2^n)$		₹ `	(n^3)			
Problems in crequire expon	elass P (as in P va ential time	s. NP)	tı	rue		false]	not	know	n [
The Travelling problem can be polynomial ti	be solved in	true		fals	e] 1	not kr	nown	V	/		