where $0 \le n \le 6$.

Name:												
NetID:			<u>-</u>	Lecture:		\mathbf{A}	В					
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
1. (4 points) I	s this claim true?	? Give a cond	crete	counte	r-exan	ple or	brief	ly exp	olain	why i	it's tr	ue.
For an	ny sets A and B ,	$(A \cap B) \cup (A$	$A \cap \overline{B}$	() = A.								
2. (4 points) (Check the (single)) box that be	est ch	aracte	rizes ea	ach ite	m.					
If $x \in A \cap A$ then $x \in A$,	e for all sets se for all sets				${ m tr}$	ue for	some	e sets	s A ar	nd B	
-	tive integers n , then $n > 8$.		rue		fals	e]	unde	fined]	
3. (7 points)	In \mathbb{Z}_7 , find the v	value of $[3]^{37}$.	You	ı must	show ;	your w	ork, l	keepir	ıg all	num	bers	in yo

calculations small. You may not use a calculator. You must express your final answer as [n],

Name:_____

NetID:_______ Lecture:

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (4 points) $A = \{4, 5, 9\}$ $B = \{\text{arya, bran}\}$ $C = \{2, 4, 10\}$ $(A \cap C) \times B =$

 $|A \times B \times C| =$

2. (4 points) Check the (single) box that best characterizes each item.

 $A \times A = A$ (Assume $A \neq \emptyset$)

true for all sets A
true for some sets A

false for all sets A

 \mathbf{A}

 \mathbf{B}

 $\emptyset \subseteq A$

true for all sets A false for all sets A

true for some sets A

3. (7 points) In \mathbb{Z}_{11} , find the value of $[6]^{42}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 10$.

NetID:_____

Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (4 points)
$$M = \{\text{cereal, toast}\}$$
 $N = \{\text{milk, coffee, wine}\}$
$$P = \{\text{wine, beer, (coffee, ham), (milk, ham)}\}$$

$$M \times (N - P) =$$

$$|M \times N \times P| =$$

2. (4 points) Check the (single) box that best characterizes each item.

 $\overline{A \cup B} = \overline{A} \cap \overline{B}$

true for all sets A and B false for all sets A and B

true for some sets A and B

 $\{\emptyset\}\times\{\emptyset\} =$

Ø

 $\{\emptyset\}$

 $\{\emptyset,\emptyset\}$

 $\{(\emptyset,\emptyset)\}$

3. (7 points) In \mathbb{Z}_{17} , find the value of $[5]^{37}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 16$.

A

 \mathbf{B}

NetID:______ Lecture:

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (4 points)
$$A = \{\text{trump, rubio}\}$$
 $B = \{\text{clinton, sanders}\}$ $C = \{\text{ (trump, clinton), (sanders, rubio)}\}$ $(B \times A) - C =$

$$(A \cap C) \times B =$$

2. (4 points) Check the (single) box that best characterizes each item.

 $A \cap B = A \cup B$

true for all sets A and B false for all sets A and B

true for some sets A and B

For all reals n, if $n^2 = 101$, then n > 11.

true

false

undefined

3. (7 points) In \mathbb{Z}_9 , find the value of $[4]^6 \times [5]^{20}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 8$.

Name:			
NetID:	Lecture:	${f A}$	В

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (4 points)
$$A = \{\text{ginger}, \text{clove}, \text{nutmeg}\}$$
 $B = \{\text{ginger}, \text{vanilla}, \text{pepper}\}$ $C = \{\text{(clove, nutmeg)}\}$ $A \cap B = \{\text{ginger}, \text{clove}, \text{nutmeg}\}$

 $A \cap C =$

2. (4 points) Check the (single) box that best characterizes each item.

For any sets A and B, if $x \in A - B$, then $x \in A$. true false

 $\{\emptyset\}\subseteq A \qquad \qquad \text{true for all sets A} \qquad \qquad \text{true for some sets A} \qquad \qquad \\ \text{false for all sets A} \qquad \qquad \\$

3. (7 points) In \mathbb{Z}_{17} , find the value of $[5]^{42}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 16$.

Name:____

NetID:_____ Lecture: A

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (4 points) Is this claim true? Give a concrete counter-example or briefly explain why it's true.

For any sets A and B, $A \cup (B - A) = A \cup B$.

2. (4 points) Check the (single) box that best characterizes each item.

Let A and B be disjoint. |A - B| = |A| - |B|

true for all sets A and B false for all sets A and B

true for some sets A and B

 \mathbf{B}

 $\{1,2\} \cap \emptyset =$

Ø ____

 $\{(1,\emptyset),(2,\emptyset)\}$

 $\{1,2,\emptyset\}$ undefined

3. (7 points) In \mathbb{Z}_7 , find the value of $[3]^{41}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 6$.

Name:												
NetID:			-	$L\epsilon$	ecture	e :	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

1. (4 points) Is this claim true? Give a concrete counter-example or briefly explain why it's true.

For any sets A, B, and C, if $A \cap B = \emptyset$ and $B \cap C = \emptyset$ then $A \cap C = \emptyset$.

2. (4 points) Check the (single) box that best characterizes each item.

$$|A \cup B| \le |A| + |B|$$
 true for all sets A and B true for some sets A and B $\forall x \in \mathbb{Q}$, if $x^2 = 3$, then $x > 1000$. true false undefined

3. (7 points) In \mathbb{Z}_{13} , find the value of $[7]^{19}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 12$.

 \mathbf{A}

 \mathbf{B}

Name:____

NetID:______ Lecture:

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (4 points) $A = \{\text{oak}, \text{apple}, \text{maple}, \text{elm}\}$ $B = \{\text{tree}, \text{leaf}, \text{oak}\}$ $C = \{(\text{oak}, \text{tree})\}$ $|A \times (B - C)| =$

 $A \cap B =$

2. (4 points) Check the (single) box that best characterizes each item.

Sets A and B are disjoint A - B = B - A $A = \overline{B}$

 $A \cap B = \{\emptyset\} \qquad \qquad A \cap B = \emptyset$

 $\{1,2\} \times \emptyset = \emptyset \qquad \{(1,\emptyset),(2,\emptyset)\} \qquad \{1,2,\emptyset\} \qquad \text{undefined}$

3. (7 points) In \mathbb{Z}_{13} , find the value of $[7]^{21}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 12$.