Name:												
NetID:				Le	ecture	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

1. (4 points) Is this claim true? Give a concrete counter-example or briefly explain why it's true.

For any sets A and B, $(A \cap B) \cup (A \cap \overline{B}) = A$.

Solution: This claim is true. If x is an element of A, there are exactly two possibilities: either x is in B or x is not in B (i.e. x is in \overline{B}).

2. (4 points) Check the (single) box that best characterizes each item.

If $x \in A \cap B$, true for all sets A and B $\sqrt{}$ true for some sets A and B then $x \in A$.

For all positive integers n, if n! < -10, then n > 8.

true for all sets A and B $\sqrt{}$ true for some sets A and B $\sqrt{}$ undefined

3. (7 points) In \mathbb{Z}_7 , find the value of $[3]^{37}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 6$.

Solution: $[3]^2 = [9] = [2]$ $[3]^4 = [2]^2 = [4]$ $[3]^8 = [4]^2 = [16] = [2]$ $[3]^{16} = [2]^2 = [4]$ $[3]^{32} = [4]^2 = [2]$ $[3]^{37} = [3]^{32} \cdot [3]^4 \cdot [3] = [2][4][3] = [24] = [3]$

Name:			

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (4 points) $A = \{4, 5, 9\}$ $B = \{\text{arya, bran}\}$ $C = \{2, 4, 10\}$ $(A \cap C) \times B =$

Solution: $\{4\} \times B = \{(4, \text{arya}), (4, \text{bran})\}$

 $|A \times B \times C| =$

Solution: $3 \times 2 \times 3 = 18$

2. (4 points) Check the (single) box that best characterizes each item.

 $A \times A = A$ true for all sets A false for all sets A (Assume $A \neq \emptyset$) true for some sets A

 $\emptyset \subseteq A$ true for all sets A $\sqrt{}$ true for some sets A $\boxed{}$ false for all sets A

3. (7 points) In \mathbb{Z}_{11} , find the value of $[6]^{42}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 10$.

$$[6]^2 = [36] = [3]$$

$$[6]^4 = [3]^2 = [9]$$

$$[6]^8 = [9]^2 = [81] = [4]$$

$$[6]^{16} = [4]^2 = [16] = [5]$$

$$[6]^{32} = [5]^2 = [25] = [3]$$

$$[6]^{42} = [6]^{32} \cdot [6]^8 \cdot [6]^2 = [3][4][3] = [36] = [3]$$

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (4 points) $M = \{\text{cereal, toast}\}$ $N = \{\text{milk, coffee, wine}\}$ $P = \{\text{wine, beer, (coffee, ham), (milk, ham)}\}$

$$M \times (N - P) =$$

Solution: $M \times (N - P) = M \times \{\text{milk, coffee}\}\$

 $= \{(cereal, milk), (cereal, coffee), (toast, milk), (toast, coffee)\}$

 $|M \times N \times P| =$

Solution: $|M \times N \times P| = 2 \cdot 3 \cdot 4 = 24$

2. (4 points) Check the (single) box that best characterizes each item.

 $\overline{A \cup B} = \overline{A} \cap \overline{B}$ true for all

true for all sets A and B false for all sets A and B

true for some sets A and B

 $\{\emptyset\} \times \{\emptyset\} =$

Ø

{Ø}

 $\{\emptyset,\emptyset\}$

 $\{(\emptyset,\emptyset)\}$

 $\sqrt{}$

3. (7 points) In \mathbb{Z}_{17} , find the value of $[5]^{37}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 16$.

Solution:

$$[5]^2 = [25] = [8]$$

$$[5]^4 = [8]^2 = [64] = [13] = [-4]$$

$$[5]^8 = [-4]^2 = [16] = [-1]$$

$$[5]^{16} = [-1]^2 = [1]$$

$$[5]^{32} = [1]^2 = [1]$$

So

$$[5]^{37} = [5]^{32} \cdot [5]^4 \cdot [5] = [1][-4][5] = [-20] = [14]$$

6

Name:											
NetID:	-	$L\epsilon$	ecture	e:	\mathbf{A}	В					
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	ļ

3. (7 points) In \mathbb{Z}_9 , find the value of $[4]^6 \times [5]^{20}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 8$.

```
Solution: [5]^2 = [25] = [7]

[5]^4 = [7]^2 = [49] = [4]

[5]^8 = [4]^2 = [16] = [7]

[5]^{16} = [7]^2 = [49] = [4]

[4]^2 = [16] = [7]

[4]^4 = [49] = [4]

[4]^6 \times [5]^{20} = [4]^4 \cdot [4]^2 \cdot [5]^{16} \cdot [5]^4 = [4] \cdot [7] \cdot [4] \cdot [4] = [28] \cdot [16] = [1] \cdot [7] = [7]
```

Name:												
NetID:			_	Le	ecture	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
1. (4 points) $A \cap B =$ Solution: $A \cap C =$ Solution:		$, nutmeg \}$	В	$= \{ gin \}$	ger, va	nilla, p	epper	}	<i>C</i> =	= { (ci	love,	$\operatorname{nutmeg})\ raket{}$
For any set	B , then $x \in A$.		true		fal			sets A	1	$\sqrt{}$		

3. (7 points) In \mathbb{Z}_{17} , find the value of $[5]^{42}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 16$.

false for all sets A

$$[5]^{2} = [25] = [8]$$

$$[5]^{4} = [8]^{2} = [64] = [-4]$$

$$[5]^{8} = [-4]^{2} = [16] = [-1]$$

$$[5]^{16} = [-1]^{2} = [1]$$

$$[5]^{32} = [1]^{2} = [1]$$
So
$$[5]^{42} = [5]^{32} \cdot [5]^{8} \cdot [5]^{2} = [1][-1][8] = [-8] = [9]$$

 $[3]^{32} = [4]^2 = [2]$

 $[3]^{41} = [3]^{32} \cdot [3]^8 \cdot [3] = [2][2][3] = [12] = [5]$

Name:												
NetID:			-	Lecture:			A I					
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
1. (4 points) I	s this claim true?	Give a cone	crete	counte	r-exan	nple or	brief	ly exp	olain	why	it's tr	rue.
For an	y sets A and B ,	$A \cup (B - A)$	=A	$\cup B$.								
A. If x is in	This claim is true $A \cup (B - A)$ then $A \cup B$ but	$en x \in (B - 1)$	A), so	x is in	B. G							
2. (4 points) (Check the (single)	box that be	est ch	aractei	rizes ea	ach ite	m.					
Let A and A $ A - B = A $	$A \mid B \mid$	rue for all se					true	for so	me s	ets A	and	В √
$\{1,2\}\cap\emptyset=$	= Ø {Ø}	√ 	{(1 {1,	(0,0),(2,2)	Ø)} [_	$1, 2, \emptyset$ ndefir	-			
	In \mathbb{Z}_7 , find the version small. You matrix $1 \le 6$.											
Solution:	$[3]^2 = [9] = [2]$											
$[3]^4 = [2]^2 =$												
$[3]^8 = [4]^2 =$												
$[3]^{16} = [2]^2$	= [4]											

Name:												
NetID:				Le	ecture	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

1. (4 points) Is this claim true? Give a concrete counter-example or briefly explain why it's true.

For any sets A, B, and C, if $A \cap B = \emptyset$ and $B \cap C = \emptyset$ then $A \cap C = \emptyset$.

Solution: This claim is false. Consider $A = C = \{1\}$ and $B = \{2\}$. Then $A \cap B = \emptyset$ and $B \cap C = \emptyset$, but $A \cap C = \{1\} \neq \emptyset$.

2. (4 points) Check the (single) box that best characterizes each item.

$$|A \cup B| \le |A| + |B|$$
 true for all sets A and B true for some sets A and B false for all sets A and B $\forall x \in \mathbb{Q}$, if $x^2 = 3$, then $x > 1000$. true $\sqrt{}$ false undefined

3. (7 points) In \mathbb{Z}_{13} , find the value of $[7]^{19}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 12$.

$$[7]^{2} = [49] = [10]$$

$$[7]^{4} = [100] = [9]$$

$$[7]^{8} = [9]^{2} = [81] = [3]$$

$$[7]^{16} = [3]^{2} = [9]$$

$$[7]^{19} = [7]^{16} \cdot [7]^{2} \cdot [7] = [9] \cdot [10] \cdot [7]$$

$$[9] \cdot [10] \cdot [7] = [90] \cdot [7] = [-1] \cdot [7] = [-7] = [6]$$
So $[7]^{19} = [6]$

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (4 points) $A = \{\text{oak}, \text{apple}, \text{maple}, \text{elm}\}$ $B = \{\text{tree}, \text{leaf}, \text{oak}\}$ $C = \{(\text{oak}, \text{tree})\}$ $|A \times (B - C)| =$

Solution: (B - C) = B. So $|A \times (B - C)| = 4 \times 3 = 12$

 $A \cap B =$

Solution: $A \cap B = \{oak\}$

2. (4 points) Check the (single) box that best characterizes each item.

Sets A and B are disjoint A - B = B - A $A = \overline{B}$ $A \cap B = \{\emptyset\}$ $A \cap B = \emptyset$ $A \cap B = \emptyset$

3. (7 points) In \mathbb{Z}_{13} , find the value of $[7]^{21}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 12$.

$$[7]^2 = [49] = [10] = [-3]$$

$$[7]^4 = ([7]^2)^2 = [-3]^2 = [9]$$

$$[7]^8 = ([7]^4)^2 = [9]^2 = [81] = [3]$$

$$[7]^{16} = ([7]^8)^2 = [3]^2 = [9]$$

$$[7]^{21} = [7]^{16} \cdot [7]^4 \cdot [7] = [9] \cdot [9] \cdot [7] = [81] \cdot [7] = [3] \cdot [7] = [21] = [8]$$