Lecture: \mathbf{B} \mathbf{A}

Discussion: Thursday Friday 9 **12** 1 $\mathbf{2}$ 3 6 10 11 4 5

Let's define a relation T between natural numbers follows:

aTb if and only if a = b + 2k, where k is a natural number

Working directly from this definition, prove that T is antisymmetric.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

A closed interval of the real line can be represented as a pair (c, r), where c is the center of the interval and r is its radius. Let $X = \{(c, r) \mid c, r \in \mathbb{R}, r \geq 0\}$ be the set of closed intervals represented this way.

Now, let's define the interval containment \preceq on X as follows

 $(c,r) \leq (d,q)$ if and only if $r \leq q$ and $|c-d| + r \leq q$.

Prove that \leq is transitive.

Name:												
NetID:				Lecture:		\mathbf{A}	В					
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

Suppose that T is a relation on the integers which is transitive. Let's define a relation R on the integers as follows:

xRy if and only if there is an integer k such that xTk and kTy.

Prove that R is transitive.

 \mathbf{B}

 \mathbf{A}

Name:_____

NetID:_ Lecture:

Discussion: Thursday Friday 9 10 11 **12** 1 $\mathbf{2}$ 3 **5** 6 4

Let T be the relation defined on \mathbb{Z}^2 by

(x,y)T(p,q) if and only if x < p or $(x = p \text{ and } y \le q)$

Prove that T is antisymmetric.

Name:

NetID:_____ Lecture: \mathbf{B} \mathbf{A}

Discussion: Thursday Friday 9 10 11 **12** 1 2 3 6 4 5

Define the relation \sim on $\mathbb Z$ by

 $x \sim y$ if and only if $5 \mid (3x + 7y)$

Working directly from the definition of divides, prove that \sim is transitive.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

Let $A=\{(x,y,z)\in\mathbb{Z}^3:x\leq y\leq z\}.$ Let's define a relation R on A as follows:

(a,b,c)R(x,y,z) if and only if $a \le x$ and $z \le b$.

Working directly from this definition, prove that R is antisymmetric.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

Let $A = \mathbb{Z}^+ \times \mathbb{Z}^+$, i.e. pairs of positive integers.

Define a relation \gg on A as follows:

 $(x,y)\gg(p,q)$ if and only if there exists an integer $n\geq 1$ such that (x,y)=(np,nq).

Prove that \gg is antisymmetric.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

Let $A=\{(x,y,z)\in\mathbb{Z}^3:x\leq y\leq z\}.$ Let's define a relation R on A as follows:

(a,b,c)R(x,y,z) if and only if $a \le x$ and $z \le b$.

Working directly from this definition, prove that R is transitive.