Name:												
NetID:			_	Le	cture	e :	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
. –	How many difference icola''? Show y		string	gs can b	e mad	le be re	earrar	nging '	the l	etters	s in th	ne word
	There are 12 let otal number of po		rearr	ange, w $\frac{12!}{4!2!2!}$	$^{ m vith}~4~{ m c}$	copies	of a,	2 copi	es of	l, an	d 2 c	opies of
2. (10 points)	Check the (single	e) box that h	oest c	haracte	erizes e	each it	em.					
f(x) = 2x	\mathbb{R} is a function suthen the set of all the of f .			lomain mage	$\boxed{\hspace{0.2cm}}$		co-dor none o	main of thes	se			
$f: \mathbb{N}^2 \to \mathbb{N}$ $f(p,q) = p$		onto $\sqrt{}$	ne	ot onto		1	not a	functi	on			
$g: (\mathbb{Z}^+)^2 - g(x,y) = g$	0.70	e-to-one		\mathbf{not}	one-to-	-one		n	ot a	func	tion	
choose from	d 12 mailboxes. n and each mailbor. By the pigeon appears on exactl	ox is painted hole princip	with le, th	a		true			false	e	<u> </u>	
$\exists y \in \mathbb{Z}, \ \forall x$	$x \in \mathbb{Z}, \ y \le x$	true	е	7	false	·]					

Name:												
NetID:			-	Le	ectur	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
colored pur	Hermione Graing ple, magenta, and is guaranteed to h	d shocking	pink.	How	many	socks	must	she p	oull (out o	f the	
	She needs to pul as that two must				pigeon	hole p	rincip	le, fou	ır so	cks ar	nd on	ly three
2. (10 points)	Check the (single	e) box that h	oest c	haract	erizes	each it	em.					
	is onto if and onle same as its co-d	•	ie	$\sqrt{}$	false	e						
$g: \mathbb{R} \to [-1]$ $g(x) = \sin(x)$	onto	$\sqrt{}$	not on	nto [not a	a func	tion				
$g: \mathbb{R}^2 \to \mathbb{R}$ $g(x,y) = (y)$		o-one $\sqrt{}$		not on	e-to-oı	ne		not	a fu	nctior	n [
stamina. If	as exactly one go there are 10 elverys that at least the	s, the pigeor	nhole		r	true			fals	e v	✓	
$\exists t \in \mathbb{N}, \ \forall p$	$\in \mathbb{Z}^+, \ \gcd(p,t) =$	= p true	e	$\sqrt{}$	false							

Name:												
NetID:			_	Lecture:		e :	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
new editor	8 presidential can would like Bernie the eight people?	and Hilary		_		-	,		_		_	
_	Bernie and Hilans. However, Bernie possibilities is 2 ·	nie might sta								_		•
2. (10 points)	Check the (single	e) box that l	best o	charact	erizes	each it	em.					
	$A \to B. \text{ For } A, \text{ if } x = y, \text{ then } A.$	onto		one	e-to-on	e		neith	ıer	$\sqrt{}$		
$g: \mathbb{R} \to [0, g(x)] = \sin(x)$	- Onto	n	not or	nto		not a	ı func	tion				
$f: \mathbb{R} \to \mathbb{Z}$ $f(x) = x$	one-to	o-one		not one	e-to-or	ne		not	a fui	nction	ı v	/
tween 1 and hole princip	room is given and 10 (inclusive). ble, if there are 21 must be shared l	According to dorm room	o the	pigeon en ever	1-	true			fals	se .	\checkmark	
$\exists y \in \mathbb{Z}, \ \forall x$	$\in \mathbb{Z}, \ x - y < 100$	0 tru	e [false]					

Name:												
NetID:			_	$\mathrm{L}\epsilon$	ectur	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
students in	To make exam graces CS 241 has been Use the Pigeonh	en assigned	a ur	nique 3	-chara	cter e	xam (code.	The	e cha		
Since there	Since there are are more student lents with the sar	s than codes		,								
2. (10 points)	Check the (single	e) box that b	oest o	charact	erizes	each it	em.					
	$\mathbb R$ is a function suthen the real num			domain image			co-don	nain of thes	e	$\sqrt{}$		
$f: \mathbb{Z} \to \mathbb{Z}$ $f(x) = x + f(x) = x - f(x)$, , ,	onto		not or	nto	$\sqrt{}$	not	a fur	ictio:	n		
$g: \mathbb{N}^2 \to \mathbb{N}$ $g(x,y) = gc$	$\operatorname{ed}(x,y)$ on	e-to-one		not	one-to	o-one		n	ot a	funct	ion	\checkmark
stamina. If	as exactly one go there are 10 elve with the same gif	es, there mus		0 /		true]	false]	
	$x \in \mathbb{R}^+, xy = 1$ positive real num	bers.)	true	e		false						

Name	e :													
\mathbf{NetIl}	D:				<u>-</u>	Le	ectur	e:	\mathbf{A}	В				
Discus	ssion:	Thurs	day	Friday	9	10	11	12	1	2	3	4	5	6
1. (5 <i>B</i> ?		Suppose ti	hat $ A $	= p and $ B $	q = q	q. How	many	differ	ent fu	nctio	ns ar	e the	re fro	m A to
So	lution:	q^p												
2. (10	points)	Check the	s (single	e) box that b	est c	haract	erizes (each it	em.					
if e	each valu	s one-to-o e in the c pre-image	o-doma	•	e	$\sqrt{}$	false							
	$\mathbb{R}^2 \to \mathbb{R}$ $(x,y) = \lfloor x \rfloor$	$x \rfloor + y$	ont	to 🗸	not	tonto		ne	ot a fu	unctio	on [
	$\mathbb{Z}^2 \to \mathbb{Z}^2$ $(x,y) = (y)$		one-to	o-one $\sqrt{}$		not on	e-to-oı	ne _		not	a fu	nctio	n	
13		rts. At lea		trendy sloga e of these shir		_		true]	false			
$\forall x$	$\in \mathbb{Q}, \exists m$	$n, n \in \mathbb{Z}, \ x$	$x = \frac{m}{n}$	true	e	1/	false							

true

false

Name:												
NetID:			_	$L\epsilon$	ectur	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
` - /	15 men and 15 w many different man?			_			_				_	
	We're construction le in each set, the	-			women	to the	e men	(or v	ice v	rersa).	. Sinc	ce there
2. (10 points)	Check the (single	e) box that h	best o	charact	erizes e	each it	em.					
	: $A \to B$. For there is a $y \in B$,	onto		one	e-to-on	e		neith	er			
$g: (\mathbb{Z}^+)^2 \to g(x,y) = \operatorname{gc}$		to 🗸	not	t onto		no	ot a fi	ınctio	n [
$f: \mathbb{N} \to \mathbb{R}$ $f(x) = x^2 + x^2 +$	- 2 one-te	o-one $\sqrt{}$		not on	e-to-oı	ne _		not	a fu	nction	n	
	shirt has one of 6 irts. There is a shirts.			_		true]	false	;		
$\forall x \in \mathbb{Z}, \ \exists y$	$\in \mathbb{N}, \ x^2 = y$	tru	e _	$\sqrt{}$	false							

Na	me:												
Ne	tID:				Le	cture	e:	\mathbf{A}	В				
Disc	cussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
1.		Suppose that $ A $ ify or show work.	= 2 and $ B $	= 3	B. How	many	onto f	iuncti	ons ai	re th	ere fr	om A	to B ?
	Solution:	There are no ont	to functions	from	A to E	3, beca	use $ A $	is sı	naller	tha	n B .		
2.	(10 points)	Check the (single	e) box that b	est c	haracte	erizes e	each it	em.					
	•	R is a function su hen the integers i			lomain mage	$\sqrt{}$		co-dor none c		se [
	$f: \mathbb{N}^2 \to \mathbb{Z}$ $f(p,q) = 2^p$	3^q onto	n	ot on	ito \	/	not a	ı func	tion				
	$g: \mathbb{Z} \to \mathbb{Z}$ $g(x) = x x $	on	e-to-one	/	not	one-to	-one		n	ot a	funct	ion	
	stamina. If	as exactly one g there are 10 elver ys that at least o	s, the pigeon	hole		r	true			fals	e v	/	
		$y \in \mathbb{R}^+, \ xy = 1$ positive real numbers	bers.)	true		fa	alse [

Name:												
NetID:			-	Le	A	В						
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
between ze	Prof. Snape is ro and 100 (inclusts got the same so	sive). Assun	ning	no one	missee	d the		-			_	
	There are 101 d ot the same score.						-				rincip	ole, two
2. (10 points)	Check the (single	e) box that b	oest o	charact	erizes o	each it	em.					
If $f: A \to $ then	B is one-to-one,	$ A \ge A $	B		$ A \leq$	$\leq B $			A =	: <i>B</i>		
$g: \mathbb{N}^2 \to \mathbb{N}$ $g(x,y) = ge$	0.10	to	not	onto		no	t a fu	nctio	n [$\sqrt{}$		
$g: \mathbb{R} \to \mathbb{R}^2$ $g(x) = (x, 3)$	0.70	e-to-one	\checkmark	not	one-to	o-one		r	not a	funct	tion	
choose fron single color	d 12 mailboxes. n and each mailbox By the pigeon appears on at leas	ox is painted hole principl	with le, th	ı a		true			false	,		
$\exists m,n\in\mathbb{Z},$	$\forall x \in \mathbb{Q}, \ x = \frac{m}{n}$	true	e [false]					