\mathbf{B}

Name:_____

NetID:_____ Lecture: A

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(20 points) Suppose that $g: \mathbb{N} \to \mathbb{R}$ is defined by

$$g(0) = 0$$
 $g(1) = \frac{4}{3}$
 $g(n) = \frac{4}{3}g(n-1) - \frac{1}{3}g(n-2)$, for $n \ge 2$

Use (strong) induction to prove that $g(n) = 2 - \frac{2}{3^n}$

Solution: Proof by induction on n.

Base case(s): n = 0: $2 - \frac{2}{3^n} = 2 - \frac{2}{1} = 0 = g(0)$ So the claim holds. n = 1: $2 - \frac{2}{3^n} = 2 - \frac{2}{3} = \frac{4}{3} = g(1)$ So the claim holds.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that $g(n) = 2 - \frac{2}{3^n}$, for $n = 0, 1, \dots, k - 1$ for some integer $k \ge 2$.

Inductive Step:

We need to show that $g(k) = 2 - \frac{2}{3^k}$

$$\begin{split} g(k) &= \frac{4}{3}g(k-1) - \frac{1}{3}g(k-2) & \text{[by the def, } k \geq 2] \\ &= \frac{4}{3}\left(2 - \frac{2}{3^{k-1}}\right) - \frac{1}{3}\left(2 - \frac{2}{3^{k-2}}\right) & \text{[Inductive Hypothesis]} \\ &= \frac{8}{3} - \frac{8}{3^k} - \frac{2}{3} + \frac{2}{3^{k-1}} \\ &= \frac{6}{3} - \frac{8}{3^k} + \frac{6}{3^k} \\ &= 2 - \frac{2}{3^k}. \end{split}$$

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(20 points) Let function $f: \mathbb{N} \to \mathbb{Z}$ be defined by

$$f(0) = 2$$

$$f(1) = 7$$

$$f(n) = f(n-1) + 2f(n-2)$$
, for $n \ge 2$

Use (strong) induction to prove that $f(n) = 3 \cdot 2^n + (-1)^{n+1}$ for any natural number n.

Solution: Proof by induction on n.

Base case(s): For n = 0, we have $3 \cdot 2^0 + (-1)^1 = 3 - 1 = 2$ which is equal to f(0). So the claim holds.

For n=1, we have $3 \cdot 2^1 + (-1)^2 = 6 + 1 = 7$ which is equal to f(1). So the claim holds.

Inductive hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $f(n) = 3 \cdot 2^n + (-1)^{n+1}$, for n = 0, 1, ..., k-1 where $k \ge 2$.

Rest of the inductive step:

$$\begin{array}{lll} f(k) & = & f(k-1) + 2f(k-2) & \text{by definition of } f \\ & = & (3 \cdot 2^{k-1} + (-1)^k) & + & 2(3 \cdot 2^{k-2} + (-1)^{k-1}) & \text{by inductive hypothesis} \\ & = & (3 \cdot 2^{k-1} + (-1)^k) & + & 3 \cdot 2^{k-1} + 2(-1)^{k-1} & \\ & = & 6 \cdot 2^{k-1} + (-1)^k - 2(-1)^k & \\ & = & 3 \cdot 2^k - (-1)^k & \\ & = & 3 \cdot 2^k (-1)^{k+1} & \end{array}$$

So $f(k) = 3 \cdot 2^k (-1)^{k+1}$, which is what we needed to show.

Name:												
NetID:				Lecture: A				В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

(20 points) Use (strong) induction to prove that the following claim holds:

Claim: For any integer $n \geq 2$, if p_1, \ldots, p_n is a sequence of integers and $p_1 < p_n$, then there is an index j $(1 \leq j < n)$ such that $p_j < p_{j+1}$.

Solution:

Base case(s): Proof by induction on n. At n = 2: It's given that $p_1 < p_n$. But $p_n = p_2$. So $p_1 < p_2$ and so j = 1 is the required index.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that any sequence of integers p_1, \ldots, p_n with $p_1 < p_n$ has an index j $(1 \le j < n)$ such that $p_j < p_{j+1}$, for $n = 2, \ldots, k$.

Rest of the inductive step: Let p_1, \ldots, p_{k+1} be a sequence of k+1 integers, with $p_1 < p_{k+1}$.

Consider p_k and p_{k+1} . There are two cases:

Case (1): $p_k < p_{k+1}$. Then the index j = k works.

Case (2): $p_k \ge p_{k+1}$. Then we have $p_1 < p_{k+1}$ and $p_{k+1} \le p_k$. So $p_1 < p_k$. So we can apply the inductive hypothesis to the shorter subsequence p_1, \ldots, p_k . That is, by the inductive hypothesis, there is an index j into the subsequence (i.e. $1 \le j < k$) such that $p_j < p_{j+1}$. This (obviously) also works as an index into the longer sequence of k+1 integers.

In both cases, we have found an index j such that $p_j < p_{j+1}$, which is what we needed to find.

[Notes: it also works to remove the first element p_1 from the sequence, with small changes to the inductive step. Your inductive step doesn't need to be quite this detailed.]

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(20 points) Suppose that $f: \mathbb{Z}^+ \to \mathbb{Z}$ is defined by is defined by

$$f(1) = 5$$
 $f(2) = -5$

$$f(n) = 4f(n-2) - 3f(n-1)$$
, for all $n > 3$

Use (strong) induction to prove that $f(n) = 2 \cdot (-4)^{n-1} + 3$

Solution: Proof by induction on n.

Base case(s): For n = 1, $2 \cdot (-4)^{n-1} + 3 = 2 \cdot (-4)^0 + 3 = 2 \cdot 1 + 3 = 5$, which is equal to f(1).

For
$$n = 2$$
, $2 \cdot (-4)^{n-1} + 3 = 2 \cdot (-4)^1 + 3 = 2 \cdot (-4) + 3 = -5$, which is equal to $f(2)$.

So the claim holds.

Inductive hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that $f(n) = 2 \cdot (-4)^{n-1} + 3$, for n = 1, 2, ..., k - 1, for some integer $k \ge 3$

Rest of the inductive step:

Using the definition of f and the inductive hypothesis, we get

$$f(k) = 4f(k-2) - 3f(k-1) = 4(2 \cdot (-4)^{k-3} + 3) - 3(2 \cdot (-4)^{k-2} + 3)$$

Simplifying the algebra,

$$4(2 \cdot (-4)^{k-3} + 3) - 3(2 \cdot (-4)^{k-2} + 3) = 8 \cdot (-4)^{k-3} + 12 - 6 \cdot (-4)^{k-2} - 9$$

$$= -2 \cdot (-4)^{k-2} - 6 \cdot (-4)^{k-2} + 3$$

$$= -8 \cdot (-4)^{k-2} + 3 = 2 \cdot (-4)^{k-1} + 3$$

So $f(k) = 2 \cdot (-4)^{k-1} + 3$, which is what we needed to prove.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(20 points) Suppose that θ is a constant (but unknown) real number. For any real number p, the angle addition formulas imply the following two equations (which you can assume without proof):

$$\cos(\theta)\cos(p\theta) = \cos((p+1)\theta) + \sin(\theta)\sin(p\theta) \tag{1}$$

$$\cos(\theta)\cos(p\theta) = \cos((p-1)\theta) - \sin(\theta)\sin(p\theta) \tag{2}$$

Suppose that $f: \mathbb{Z}^+ \to \mathbb{Z}$ is defined by

$$f(0) = 1 \qquad f(1) = \cos(\theta)$$

$$f(n+1) = 2\cos(\theta)f(n) - f(n-1)$$
, for all $n \ge 2$.

Use (strong) induction to prove that $f(n) = \cos(n\theta)$ for any natural number n.

Solution: Proof by induction on n.

Base case(s): At n = 0, $f(n) = f(0) = 1 = \cos(0) = \cos(0\theta) = \cos(n\theta)$.

At
$$n = 1$$
, $f(n) = f(1) = \cos \theta = \cos(1\theta) = \cos(n\theta)$.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

$$f(n) = \cos(n\theta)$$
 for $n = 0, \dots, k$.

Rest of the inductive step: In particular, by the inductive hypothesis, $f(k) = \cos(k\theta)$ and $f(k-1) = \cos((k-1)\theta)$.

If we set p = k in equations (1) and (2), and then add them together, we get

$$2\cos(\theta)\cos(k\theta) = \cos((k+1)\theta) + \cos((k-1)\theta)$$

So then we can compute

$$f(k+1) = 2\cos(\theta)f(k) - f(k-1)$$

$$= 2\cos(\theta)\cos(k\theta) - \cos((k-1)\theta)$$
 (by the IH)
$$= \cos((k+1)\theta) + \cos((k-1)\theta) + \cos((k-1)\theta)$$

$$= \cos((k+1)\theta)$$

So $f(k+1) = \cos((k+1)\theta)$, which is what we needed to show.

Name:												
NetID:				Le	ecture	e :	\mathbf{A}	В				
Discussion	Thursday	Friday	Q	10	11	19	1	2	3	1	5	6

(20 points) A Zellig graph consists of 2n ($n \ge 1$) nodes connected so as to form a circle. Half of the nodes have label 1 and the other half have label -1. As you move clockwise around the circle, you keep a running total of node labels. E.g. if you start at a 1 node and then pass through two -1 nodes, your running total is -1. Use (strong) induction to prove that there is a choice of starting node for which the running total stays ≥ 0 .

Hint: remove an adjacent pair of nodes.

Solution: Proof by induction on n.

Base case(s): At n = 1, there are only two nodes. If you start at the node with label 1, the running total stays ≥ 0 .

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that there is a choice of starting node for which the running total stays ≥ 0 , for Zellig graphs with 2n nodes, where $n = 1, \ldots, k-1$.

Rest of the inductive step: Let G be a Zellig graph with 2k nodes. Find a 1 node that immediately precedes a -1 (going clockewise). Remove those two nodes m and s from G to create a smaller graph H.

By the inductive hypothesis, we can find a starting node p on H such that the running total stays ≥ 0 . I claim that p also works as a starting node for G. Between p and m, we see the same sequence of nodes as in H, so the total stays ≥ 0 . The total increases by 1 at m and the immediately decreases by 1 at s. So it can't dip below zero in that section of the circle. Between s and returning to p, we have the same running totals as in H.

So G has a starting point for which all the running totals stay ≥ 0 , which is what we needed to prove.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(20 points) (20 points) Suppose that $f: \mathbb{N} \to \mathbb{Z}$ is defined by

$$f(0) = 2$$
 $f(1) = 5$ $f(2) = 15$

$$f(n) = 6f(n-1) - 11f(n-2) + 6f(n-3)$$
, for all $n \ge 3$

Use (strong) induction to prove that $f(n) = 1 - 2^n + 2 \cdot 3^n$

Solution: Proof by induction on n.

Base case(s): At n = 0, f(0) = 2 and $1 - 2^n + 2 \cdot 3^n = 1 - 1 + 2 = 2$

At
$$n = 1$$
, $f(1) = 5$ and $1 - 2^n + 2 \cdot 3^n = 1 - 2 + 6 = 5$

At
$$n = 2$$
, $f(2) = 15$ and $1 - 2^n + 2 \cdot 3^n = 1 - 4 + 18 = 15$

So the claim holds at all three values.

Inductive hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that $f(n) = 1 - 2^n + 2 \cdot 3^n$ for n = 0, 1, ..., k - 1.

Rest of the inductive step: By the definition of f and the inductive hypothesis, we get

$$\begin{split} f(k) &= 6f(k-1) - 11f(k-2) + 6f(k-3) \\ &= 6(1 - 2^{k-1} + 2 \cdot 3^{k-1}) - 11(1 - 2^{k-2} + 2 \cdot 3^{k-2}) + 6(1 - 2^{k-3} + 2 \cdot 3^{k-3}) \\ &= (6 - 11 + 6) - (6 \cdot 2^{k-1} - 11 \cdot 2^{k-2} + 6 \cdot 2^{k-3}) + 2(6 \cdot 3^{k-1} - 11 \cdot 3^{k-2} + 6 \cdot 3^{k-3}) \\ &= 1 - (12 \cdot 2^{k-2} - 11 \cdot 2^{k-2} + 3 \cdot 2^{k-2}) + 2(18 \cdot 3^{k-2} - 11 \cdot 3^{k-2} + 2 \cdot 3^{k-2}) \\ &= 1 - 4 \cdot 2^{k-2} + 2 \cdot 9 \cdot 3^{k-2} = 1 - 2^k + 2 \cdot 2^k \end{split}$$

So $f(k) = 1 - 2^k + 2 \cdot 2^k$, which is what we needed to show.

Name:_______ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(20 points) Use (strong) induction to prove that, for any integer $n \ge 8$, there are non-negative integers p and q such that n = 3p + 5q.

Solution: Proof by induction on n.

Base case(s): At n = 8, we can chose p = 1 and q = 1. At n = 9, we can chose p = 3 and q = 0. At n = 10, we can chose p = 0 and q = 2. In all three cases, n = 3p + 5q.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that there are nonnegative integers p and q such that n = 3p + 5q, for n = 8, 9, ..., k - 1, where $k \ge 11$.

Rest of the inductive step: Consider n = k.

Notice that $k \ge 11$, so $8 \le k-3 \le k-1$. So k-3 is covered by the inductive hypothesiss. Therefore, there are non-negative integers r and q such that k-3=3r+5q.

Now, set p = r + 1. Then k = (k - 3) + 3 = (3r + 5q) + 3 = 3(r + 1) + 5q = 3p + 5q. p is non-negative since r is.

So there are non-negative integers p and q such that k = 3p + 5q, which is what we needed to prove.