CS 173, Spring 19

Examlet 8, white

1

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(10 points) Suppose we have a function f defined (for n a power of 4) by

$$f(1) = 0$$

 $f(n) = 2f(n/4) + n \text{ for } n \ge 4$

Your partner has already figured out that

$$f(n) = 2^k f(n/4^k) + n \sum_{p=0}^{k-1} 1/2^p$$

Finish finding the closed form for f(n) assuming that n is a power of 4. Show your work and simplify your answer. Recall that $\log_b n = (\log_a n)(\log_b a)$.

Name:

NetID:_ Lecture: \mathbf{B} \mathbf{A}

Thursday Friday 1 2 3 Discussion: 9 **10** 11 **12** 4 5 6

(10 points) Suppose we have a function F defined (for n a power of 2) by

$$F(2) = c$$

$$F(n) = F(n/2) + n \text{ for } n \ge 4$$

Your partner has already figured out that

$$F(n) = F(n/2^k) + \sum_{i=0}^{k-1} n \frac{1}{2^i}$$

Finish finding the closed form for F. Show your work and simplify your answer.

Name:____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (8 points) Suppose we have a function f defined by

$$f(0) = f(1) = 3$$

 $f(n) = 5f(n-2) + d$, for $n \ge 2$

where d is a constant. Express f(n) in terms of f(n-6) (where $n \ge 6$). Show your work and simplify your answer. You do **not** need to find a closed form for f(n).

2. (2 points) Check the (single) box that best characterizes each item.

The chromatic number of the 4-dimensional hypercube Q_4

2

3

4

5

CS 173, Spring 19 Examlet 8, white

4

Name:_____

NetID:_ Lecture: \mathbf{A} \mathbf{B}

Discussion: Thursday Friday 11 1 2 3 9 10 **12** 4 6 5

(10 points) Suppose we have a function f defined (for n a power of 4) by

$$f(1) = 0$$

$$f(n) = 2f(n/4) + n \text{ for } n \ge 4$$

Express f(n) in terms of $f(n/4^{13})$ (assuming n is large enough that this input hasn't reached the base case). Express your answer using a summation and show your work. Do not finish the process of finding the closed form for f(n).

Name:____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (8 points) Suppose we have a function g defined (for n a power of 3) by

$$g(1) = c$$

$$g(n) = 3g(n/3) + n \text{ for } n \ge 3$$

Express g(n) in terms of $g(n/3^3)$ (where $n \ge 27$). Show your work and simplify your answer. You do **not** need to find a closed form for g(n).

2. (2 points) Check the (single) box that best characterizes each item.

The number of nodes in the 4-dimensional hypercube Q_4

4

16

32

64

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(10 points) Suppose we have a function g defined (for n a power of 4) by

$$g(1) = c$$

$$g(n) = 2g(n/4) + n \text{ for } n \ge 4$$

Your partner has already figured out that

$$g(n) = 2^k g(n/4^k) + n \sum_{p=0}^{k-1} \frac{1}{2^p}$$

Finish finding the closed form for g(n) assuming that n is a power of 4. Show your work and simplify your answer. Recall that $\log_b n = (\log_a n)(\log_b a)$.

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (8 points) Suppose we have a function g defined (for n a power of 2) by

$$g(1) = 1$$

 $g(n) = 4g(n/2) + n^2 \text{ for } n \ge 2$

Your partner has already figured out that

$$g(n) = 4^k g(n/2^k) + kn^2$$

Finish finding the closed form for g. Show your work and simplify your answer.

2. (2 points) Check the (single) box that best characterizes each item.

The Fibonacci numbers can be defined recursively by F(0) = 0, F(1) = 1, and F(n) = F(n-1) + F(n-2) for all integers ...

$$n \ge 0$$
 $n \ge 1$ $n \ge 2$

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(10 points) Suppose we have a function g defined (for n a power of 2) by

$$g(1) = 3$$

 $g(n) = 4g(n/2) + n \text{ for } n \ge 2$

Your partner has already figured out that

$$g(n) = 4^k g(n/2^k) + \sum_{p=0}^{k-1} n2^p$$

Finish finding the closed form for g(n) assuming that n is a power of 2. Show your work and simplify your answer. Recall that $\log_b n = (\log_a n)(\log_b a)$.