Name:												
NetID:			_	Lecture:		A E						
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
1. (8 points)	Consider the follo	owing gramm	$\operatorname{nar} G$, with	start s	ymbol	S an	d terr	ninal	s a a	d b.	
	S	$\rightarrow a S a$	$\mid b S$	b a S	S b l	b S a	$\mid a \mid$	b				
Amy claims Justify your	s that this general answer.	ates all non-	-empt	y strin	gs con	ainin	g a's a	and/o	r b's.	. Is t	this c	orrect?
Solution:												
Amy is wro	ng. This gramma	ar only gener	rates	strings	of odd	l lengt	h.					
2. (4 points) C	Check the (single)	box that be	est ch	aracter	rizes ea	ach ite	m.					
	per of leaves in mplete 5-ary tree			<	5^h		≥ 5	h		5^h	+1 _ :	1
The level of in a full and binary tree	_	0	1		h -	-1		<u>≤</u>	h		ŀ	a =

b

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (8 points) Here is a grammar with start symbol S and terminal symbols a and b. Draw three parse trees for the string abba that match this grammar.

$$S \rightarrow SS \mid aS \mid Sa \mid b$$

Solution:

2. (4 points) Check the (single) box that best characterizes each item.

A full m-ary tree with i internal nodes has mi + 1 nodes total.

always $\sqrt{}$ sometimes $\boxed{}$ never $\boxed{}$

A binary tree of height h has at least $2^{h+1} - 1$ nodes.

true false $\sqrt{}$

Name:												
NetID:			_	$L\epsilon$	ecture	e :	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
	Consider the following		mar (G								
	$S b S \mid a \mid c c$ y start symbol.		Larmi	hola er	o a h	a and	d					
leaves have leaf labels.	o sequences of leathis sequence of			_	riefly v	why G			_			
with more the first ru This string	In grammar G, n than two leaves a le (SbS) which p can't be genera more than two ch in it.	requires using produces a lated by G be	ng b. e-		minal could we use out cl	tion: in the be usi e this ihildren, sir	e string is rule, to incr	$S \rightarrow R$ he cou	b, th SbS . Into by contact SbS	e onl But fSno one.	y rule each odes v This	e we time vith-
2. (4 points) (Check the (single)	box that be	est ch	aracte	rizes ea	ach ite	m.					
	matical symbol : zero-length) strin	(/)		e		ϵ			NUL	L [
Number of length $\leq k$.	bit strings of	2^k	2	$2^{k} - 1$		2^k	:-1		2	k+1 _	1	$\sqrt{}$

of itself.

Name:												
NetID:			_	${ m L}\epsilon$	ecture	e :	A	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
strings that	Min's virus detections of a sequence grammar G that	uence of one	or m	_			_					
Solution:												
G has start	symbol S, termin	nals a and b	, and	the fol	lowing	rules:						
$S \rightarrow a S b$	$\mid a b \mid$											
2. (4 points) (Check the (single)) box that be	est ch	aracte	rizes ea	ıch ite	m.					
The number	r of nodes in a	$\geq 2^h$			2^{h+1} –	1						
binary tree	of height h	$\leq 2^{h+1} - 1$			$\geq 2^{h+1}$	- 1						
A tree node	e is a descendent											

always

sometimes

never

/ 1	. 0				,							
Name:												
NetID:			_	${ m L}\epsilon$	ectur	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
1. (8 points)	Consider the following	lowing gram	mar ($\widehat{\mathcal{G}}$								
S –	$\rightarrow a S b \mid b S b$	$\mid c \mid$										
S is the onl	ly start symbol "	The terminal	lavm	hola or	o a h	and a						

S is the only start symbol. The terminal symbols are a, b, and c.

Here are two sequences of leaf labels. For each sequence, either draw a tree from grammar G whose leaves have this sequence of labels, or else explain briefly why G cannot generate this sequence of leaf labels.

ababb Solution:

This is impossible. In strings produced by G, the middle character must be a c.

2. (4 points) Check the (single) box that best characterizes each item.

The level of the root node in a tree of height h.

 $\sqrt{}$

1

h-1

h

h+1

A tree node is a proper ancestor of itself.

always

sometimes

never

Name:_____

Lecture: \mathbf{B}

Discussion: Thursday Friday $\mathbf{2}$ 3 9 **10** 11 **12** 1 5 6 4

1. (8 points) Here is a grammar with start symbol S and terminal symbols a, b, and c. Circle the trees that match the grammar.

		Ν	
	/		
S			S
1			1
a			b

2. (4 points) Check the (single) box that best characterizes each item.

A binary tree of height h has at least $2^h - 1$ nodes.

true

false

A full m-ary tree with iinternal nodes has _____ nodes total.

mi-1

mi + 1

 $\leq mi + 1$

Name:_____

NetID:_____ Lecture: A

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (8 points) Consider the following grammar G

$$S \rightarrow a \ S \ b \ | \ b \ S \ b \ | \ a \ | \ b$$

S is the only start symbol. The terminal symbols are a and b.

Here are two sequences of leaf labels. For each sequence, either draw a tree from grammar G whose leaves have this sequence of labels, or else explain briefly why G cannot generate this sequence of leaf labels.

aaaab Solution:

This is impossible. In a string produced by grammar G, all characters after the middle of the string must be b's.

 \mathbf{B}

2. (4 points) Check the (single) box that best characterizes each item.

The number of leaves in a binary tree of height h

$$2^h$$

$$2^{h+1} - 1$$

$$\leq 2^h$$

The number of paths between two distinct nodes in an *n*-node tree. Paths in opposite directions count as the same.

$$\frac{n(n-1)}{2}$$

$$\sqrt{}$$

$$n(n-1)$$

Name:_____

NetID: Lecture: \mathbf{A} \mathbf{B}

Discussion: Thursday Friday **12** $\mathbf{2}$ 3 9 **10** 11 1 5 6 4

1. (8 points) Here is a grammar with start symbol S and terminal symbols a, b, c, and d. Circle the trees that match the grammar.

2. (4 points) Check the (single) box that best characterizes each item.

The diameter of a tree of height h.

$$\leq h$$
 h $h+1$ $2h$ $\leq 2h$ $\sqrt{}$

The number of nodes in a full complete binary tree of height h

$$\geq 2^{h}$$
 $2^{h+1} - 1$ $\sqrt{ }$ $< 2^{h+1} - 1$ $> 2^{h+1} - 1$