

lab_debug : Disastrous Debugging

Week #2 – September 5-7, 2018

Welcome to Lab Debug!
Course Website: https://courses.engr.illinois.edu/cs225/labs

Overview
In this week’s lab, you will get to practice an essential skill in
computer science: debugging. This worksheet will get you familiar
with some “best practices” and questions to ask yourself when
debugging your code. For a more comprehensive list, see lab_debug’s
webpage.

Understanding the Logic
The first step in debugging is to understand what the code is meant to
do. This will make catching “logic errors” (errors in the logic of the
code) easy.

Exercise 1: How is the function blackStripes() intended to modify
myimage? Does it actually accomplish what it intends to? If not, where
are the errors?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

void blackStripes(PNG* myimage){

 for(unsigned h=0;h<myimage->height()){

 for (unsigned w=0;w<myimage->width();w+=2){

 HSLAPixel& current = myimage-> getPixel(w,h);

 double* lum = ¤t.l;

 lum = 0;

 }

 }

}

Stack or Heap?

Remember that stack and heap memory have different lifetimes. The
lifetime of a variable on the stack is based on its “scope.” Once its
scope is over, it is de-allocated automatically. The lifetime of a variable
on the heap is controlled by you. Heap memory is de-allocated only
when the application exits or when you explicitly free it. You can
request memory on the heap using the keyword new.

A segmentation fault (segfault), occurs when a program tries to
access memory that doesn’t belong to it. Segfaults often occur when
using uninitialized, null or invalid pointers.

When declaring and initializing variable, think about where it should
be saved: on the stack or on the heap.

Exercise 2.1: For each variable below, state whether it’s a stack
variable or a heap variable.
Exercise 2.2: One line in the code below may cause a segfault when
the code is run. Which line is it? ________ How would you fix it?

main.cpp

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

HSLAPixel* foo(PNG* input){

 int midW = input->width()/2;

 int midH = input->height()/2;

 double hue = input->getPixel(midW,midH).h;

 HSLAPixel midPix(hue,0.5,0.5);

 return &midPix;

}

void transform(PNG* original) {

 HSLAPixel* center = foo(original);

 double* myhue = new double;

 *myhue = center->h;

 for(unsigned w=0;w<original->width();w++){

 for(unsigned h=0;h<original->height();h++){

 HSLAPixel& curr = original->getPixel(w,h);

 curr.h = *myhue;

 }

 }

}

int main(){

 PNG png;

 png.readFromFile("alma.png");

 transform(&png);

 return 0;

}

- midPix is saved in: _____________

- center is saved in: _____________

- myhue is saved in: _____________

- w and h are saved in: ____________

- curr is saved in: _____________

Copying Correctly

When copying variables, we need to think about two things - what we
want to copy (value or address) and what is the type of the variable we
want to copy (primitive or complex). Depending on the case, we can
use a “deep copy” or a “shallow copy.” A deep copy allocates new
memory and copies values over. On the other hand, a shallow copy
just copies the pointer without allocating new memory. Keep this in
mind as you work through Exercise 3.

Exercise 3.1: What will be printed out in lines 10 and 12 of main.cpp?

Exercise 3.2: Change the code so that c1 is copied correctly into c2.

Cube.h Cube.cpp

1

2

3

4

5

6

7

8

9

10

#pragma once

class Cube{

 public:

 double w;

 double getVolume();

};

1

2

3

4

5

6

7

8

9

1

0

#include “Cube.h”

double

Cube::getVolume(){

 return w*w*w;

}

main.cpp

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

int main(){

 Cube* c1 = new Cube();

 c1->w = 4;

 Cube* c2;

 c2 = c1;

 c2->w = 3;

 std::cout<<c1->getVolume()<<std::endl; ………………………

 std::cout<<c2->getVolume()<<std::endl; ………………………

 // Clean up memory

 delete c1;

 delete c2; //ERORR !! Why?

}

In the programming part of this lab, you will:

- Learn about debugging techniques and best practices
- Explore the given code and discover how it modifies images

- Find and correct bugs in the code

As your TA and CAs, we’re here to help with your
programming for the rest of this lab section! ☺

