

lab_memory : Malevolent Memories

Week #3 – September 12-14, 2018

Welcome to Lab Memory!
Course Website: https://courses.engr.illinois.edu/cs225/labs

Overview
In this week’s lab, you will learn about memory management: how to
allocate and de-allocate memory correctly in your program. You will
discover ways memory management can go, and get to practice
spotting memory bugs in the code.

Destructors
Destructors (dtors) are special member functions of classes. They are
the opposite on constructors: their job is to release (de-allocate)
memory when an object of the class is destroyed. Destructors are
called automatically called; we never explicitly call a destructor,
instead it is implicitly called when we use the keyword “delete” or
when the lifetime of the object ends.
Exercise 1.1: Write the destructor for the Orchard class.
Exercise 1.2: When will Orchard and Tree destructors be called in
main.cpp?

orchard.h

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

#pragma once

class Tree{

public:

 string fruitName;

 double yield;

};

class Orchard{

 public:

 static const int MAX_TREES = 500;

 Orchard();

 bool addTree(Tree& t);

 Orchard(const Orchard& other);

 Orchard& operator = (Orchard const & other);

 // YOUR CODE HERE

 private:

 int size_;

 Tree* trees_;

};

orchard.cpp

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

#include “orchard.h”

Orchard::Orchard(){

 size_ = 0;

 trees_ = new Tree[MAX_TREES];

}

bool Orchard::addTree(Tree& t){

 if(size_<MAX_TREES){

 trees_[size_] = t;

 size_++;

 return true;

 }else{ return false;}

}

Orchard::Orchard (const Orchard& other){

 trees_ = new Tree[MAX_TREES];

 for (int i=0; i<other.size_; i++){

 trees_[i] = other.trees_[i];

 }

 size_ = other.size_;

}

Orchard& Orchard::operator = (Orchard const &

other){

 if(this != &other){

 for (int i=0; i<other.size_; i++){

 (*this).trees_[i] = other.trees_[i];

 }

 (*this).size_ = other.size_;

 }

 return *this;

}

// YOUR CODE HERE

main.cpp

1

2

3

4

5

6

7

8

9

10

11

12

13

14

int main() {

 Tree *t1 = new Tree;

 (*t1).fruitName = "peach";

 (*t1).yield = 25;

 Tree *t2 = new Tree;

 (*t2).fruitName = "apple";

 (*t2).yield = 40;

 Orchard * myorchard = new Orchard();

 myorchard->addTree(*t1);

 myorchard->addTree(*t2);

 delete myorchard;

 delete t1; delete t2;

}

Memory Errors

Memory errors occur when memory access is mismanaged: some ways
it can occur are through 1) invalid memory access in heap or stack, 2)
mismatched allocation/deallocation, or 3) missing allocation or
uninitialized variable access. Memory errors often result in
“segfaults” when the program is run.

Exercise 2.1: What should line 7 in main.cpp print out?
Exercise 2.2: A memory error will occur somewhere between lines
10 and 16. Find and correct this error.

main.cpp

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

void func(int idx){

 HSLAPixel array[10];

 array[idx] = new HSLAPixel(0,0,0);

}

int main() {

 for (int i=0; i<20; i++){

 std::cout<< i<< std::endl;

 func(i);

 }

 HSLAPixel * pix1 = new HSLAPixel();

 HSLAPixel * pix2 = new HSLAPixel();

 pix2 = pix1;

 delete pix1;

 delete pix2;

 return 0;

}

Memory Leaks

Memory leaks are a type of Memory Error. Memory leaks most
commonly occur when memory that is no longer needed is not
correctly released(still reachable block), or when and object/variable
is stored in memory but cannot be accessed by the running code (lost
block). Memory leaks are often harder to detect than memory errors
as they won’t always cause an error at runtime. Debugging tools such
as Valgrind can help detect memory leaks.

Exercise 3: For each memory block allocated in the code below,
decide if it has been released correctly. If not, add code to correctly
release it.

main.cpp

1

2

3

4

5

6

7

8

9

10

11

12

13

14

int main(){

 int* arr = new int[10];

 int m = 300;

 arr[0] = m;

 PNG* image = new PNG(m,m);

 HSLAPixel& mypix = (*image).getPixel(150,150);

 // Clean up memory

}

In the programming part of this lab, you will:

● Learn about two memory debugging tools: Valgrind and ASAN
● Complete the given code for lab_memory
● Debug the given code by correcting memory errors and

memory leaks

As your TA and CAs, we’re here to help with your
programming for the rest of this lab section! ☺

