

#2: Classes and Reference Variables

August 29, 2018 · Wade Fagen-Ulmschneider

Our First Class – Cube:

Cube.h Cube.cpp

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

#pragma once

class Cube {

 public:

 double getVolume();

 private:

};

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

#include "Cube.h"

double Cube::getVolume() {

}

Public vs. Private:

Situation Protection Level

Cube functionality provided to client code

Variable containing data about the Cube

Helper function used in Cube

Hierarchy in C++:
There Cube class we’re building might not be the only Cube class.
Large libraries in C++ are organized into _________________.

Cube.h Cube.cpp

1

2

3

4

5

6

7

…

#pragma once

namespace cs225 {

 class Cube {

 public:

 double getVolume();

1

2

3

4

5

6

…

#include "Cube.h"

namespace cs225 {

 double

 Cube::getVolume() {

 return length_ *

 length_ * length_;

 }

Our First Program:

main.cpp
1

2

3

4

5

6

7

8

#include "Cube.h"

#include <iostream>

int main() {

 cs225::Cube c;

 std::cout << "Volume: " << c.getVolume() << std::endl;

 return 0;

}

…run this yourself: run make and ./main in the lecture source code.

Several things about C++ are revealed by our first program:

1. _______________________
main.cpp:4

2. _______________________
main.cpp:5, main.cpp:1

3. _______________________
main.cpp:6, main:cpp:2

4. However, our program is unreliable. Why?

Default Constructor:
Every class in C++ has a constructor – even if you didn’t define one!

 Automatic/Implicit Default Constructor:

 Custom Default Constructor:

Cube.h Cube.cpp

…

4

5

6

…

class Cube {

 public:

 Cube();

 /* ... */

…

3

 4

5

6

…

Cube::Cube() {

}

Custom, Non-Default Constructors:
We can provide also create constructors that require parameters when
initializing the variable:

Cube.h Cube.cpp

…

4

5

6

…

class Cube {

 public:

 Cube(double length);

 /* ... */

…

3

 4

5

6

…

Cube::Cube(double length) {

}

Puzzle #1: How do we fix our first program?

puzzle.cpp w/ above custom constructor
…

8

9

…

 cs225::Cube c;

 cout << "Volume: " << c.getVolume() << endl;

…run this yourself: run make puzzle and ./puzzle in the lecture source code.

Solution #1:

Solution #2:

The beauty of programming is both solutions work! There’s no one right
answer, both have advantages and disadvantages!

Pointers and References – Introduction
A major component of C++ that will be used throughout all of CS 225
is the use of references and pointers. References and pointers both:

 Are extremely power, but extremely dangerous.

 Pointers are level of indirection via memory to our data.

As a level of indirection via memory to the data:

1. _______________________

2. _______________________

Often, we will have direct access to our object:

 Cube c1; // A variable of type Cube

Occasionally, we have a reference or pointer to our data:

 Cube & s1; // A reference variable of type Cube

Cube * s1; // A pointer that points to a Cube

Reference Variable
A reference variable is an alias to an existing variable. Modifying the
reference variable modifies the variable being aliased. Internally, a
reference variable maps to the same memory as the variable being
aliased:

main-ref.cpp
3

4

5

6

7

8

9

10

11

12

13

int main() {

 int i = 7;

 int & j = i; // j is an alias of i

 j = 4; // j and i are both 4.

 std::cout << i << " " << j << std::endl;

 i = 2; // j and i are both 2.

 std::cout << i << " " << j << std::endl;

 return 0;

}

…run this yourself: run make and ./main-ref in the lecture source code.

Three things to note about reference variables:

1. _______________________

2. _______________________

3. _______________________

CS 225 – Things To Be Doing:

1. Sign up for “Exam 0” (exam starts Thursday, Sept. 6th)
2. Attend lab and complete lab_intro; due Sunday, Sept. 2nd
3. MP1 released Friday; due Monday, Sept. 10th
4. Visit Piazza and the course website often!

