CS 2 #3: Memory
7 N\ 3
2 5] August 31,2018 - Wade Fagen-Ulmschneider

Pointers and References
Often, we will have direct access to our object:

| | Cube s1; // A variable of type Cube

Occasionally, we have a reference or pointer to our data:

Stack Memory:

0x£EE££00£0

0xfff£00e8

0xfFFF00e0

0xfEFF00d8

Oxf£££00d0

examplel. cpp

Cube & sl; // A reference variable of type Cube
Cube * sl; // A pointer that points to a Cube

Pointers

Unlike reference variables, which alias another variable’s memory,
pointers are variables with their own memory. Pointers store the
memory address of the contents they’re “pointing to”.

Three things to remember on pointers:

1.
2.
3.
main.cpp
4 | int main() {
5 cs225::Cube c;
6 std::cout << "Address storing ‘c’:" << &c << std::endl;
7
8 cs225: :Cube *ptr = &c;
9 std::cout << "Addr. storing ptr: "<< &ptr << std::endl;
10 std::cout << "Contents of ptr: "<< ptr << std::endl;
11
12 return 0;
13 |}

Indirection Operators:
&V

*v

1 | int main() {
2 int a;
3 int b = -3;
4 int ¢ = 12345;
5
6 int *p = &b;
7
8 return O;
9|1
Location Value Type Name
Ox£f£££00£0 >
Oxf£££00e8 >
Oxf£££00e0 >
Oxf£££00d8 >
Oxf£££00d0 >
example2.cpp
3 | int main() {
4 cs225: :Cube c;
5 cs225::Cube *p = &c;
6
7 return 0;
8|1}
Location Value Type Name

Oxff£f00£0 >

Oxf£££00e8 >

Oxf£££00e0 >

Oxf£££0048 >

Oxf£££0040 >

Stack Frames

All variables (including parameters to the function) that are part of a
function are part of that function’s stack frame. A stack frame:

1.

2.
stackframe.cpp
1 | int hello() { 6 | int main() {
2 int a = 100; 7 int a;
3 return a; 8 int b = -3;
4 |} 9 int ¢ = hello();
5 10 int d = 42;
11
12 return O;
13 | }
Location Value Type Name
Oxf£££00£0 >
Oxff££00e8 >
Oxf£££00e0 >
Ox£f£££00d8 >
O0x£f£££00d0 >
Puzzle: What happens here?
puzzle.cpp
4 | Cube *CreateCube() {
5 Cube c(20);
6 return &c;
7|}
8
9 | int main() {
10 Cube *c = CreateCube() ;
11 double r = c->getVolume() ;
12 double v = c->getSurfaceArea();
13 return 0;
14 | }

Heap Memory:
As programmers, we can use heap memory in cases where the lifecycle
of the variable exceeds the lifecycle of the function.

1. The only way to create heap memory is with the use of the
new keyword. Using new will:
[]

2. The only way to free heap memory is with the use of the
delete keyword. Using delete will:

3. Memory is never automatically reclaimed, even if it goes out of
scope. Any memory lost, but not freed, is considered to be
“leaked memory”.

heapl.cpp
4 | int main() {
5 int *p = new int;
6 Cube *c = new Cube(10);
7
8 return 0;
9|}

Stack Value Heap Value
Oxf£££00£0 > 0x42020 >
Oxf£££00e8 > 0x42018 >
Oxf£££00e0 > 0x42010 >
Ox£f£££00d8 > 0x42008 =2
0xf£££00d40 => 0x42000 =

CS 225: TTBD = lab_intro due Sunday; MP1 released and due Sept. 10

