

#5: Parameters

September 7, 2018 · Wade Fagen-Ulmschneider

Heap Memory – Allocating Arrays

heap-puzzle3.cpp
5

6

7

8

9

10

11

12

13

14

int *x;

int size = 3;

x = new int[size];

for (int i = 0; i < size; i++) {

 x[i] = i + 3;

}

delete[] x;

*: new[] and delete[] are identical to new and delete, except the
constructor/destructor are called on each object in the array.

Memory and Function Calls
Suppose we want to join two Cubes together:

joinCubes-byValue.cpp
11

12

13

14

15

16

17

18

19

20

21

22

/*

 * Creates a new Cube that contains the exact volume

 * of the volume of the two input Cubes.

 */

Cube joinCubes(Cube c1, Cube c2) {

 double totalVolume = c1.getVolume() + c2.getVolume();

 double newLength = std::pow(totalVolume, 1.0/3.0);

 Cube result(newLength);

 return result;

}

By default, arguments are “passed by value” to a function. This means
that:





Alterative #1: Pass by Pointer

joinCubes-byReference.cpp
15

16

17

18

19

20

21

22

Cube joinCubes(Cube * c1, Cube * c2) {

 double totalVolume = c1->getVolume() + c2->getVolume();

 double newLength = std::pow(totalVolume, 1.0/3.0);

 Cube result(newLength);

 return result;

}

Alternative #2: Pass by Reference

joinCubes-byPointer.cpp
15

16

17

18

19

20

21

22

Cube joinCubes(Cube & c1, Cube & c2) {

 double totalVolume = c1.getVolume() + c2.getVolume();

 double newLength = std::pow(totalVolume, 1.0/3.0);

 Cube result(newLength);

 return result;

}

Contrasting the three methods:

 By Value By Pointer By Reference

Exactly what is
copied when the
function is invoked?

Does modification
of the passed in
object modify the
caller’s object?

Is there always a
valid object passed
in to the function?

Speed

Safety

Using the const keyword

1. Using const in function parameters:

joinCubes-by*-const.cpp
15 Cube joinCubes(const Cube s1, const Cube s2)

15 Cube joinCubes(const Cube *s1, const Cube *s2)

15 Cube joinCubes(const Cube &s1, const Cube &s2)

Best Practice: “All parameters passed by reference must be
labeled const.” – Google C++ Style Guide

2. Using const as part of a member functions’ declaration:

Cube.h
1

2

3

4

5

6

7

8

9

10

11

12

13

14

#pragma once

namespace cs225 {

 class Cube {

 public:

 Cube();

 Cube(double length);

 double getVolume() ;

 double getSurfaceArea() ;

 private:

 double length_;

 };

}

Cube.cpp
…

11

12

13

14

15

16

17

…

 double Cube::getVolume() {

 return length_ * length_ * length_;

 }

 double Cube::getSurfaceArea() {

 return 6 * length_ * length_;

 }

Returning from a function
Identical to passing into a function, we also have three choices on how
memory is used when returning from a function:

Return by value:

15 Cube joinCubes(const Cube &s1, const Cube &s2)

Return by reference:

15 Cube &joinCubes(const Cube &s1, const Cube &s2)

…remember: never return a reference to stack memory!

Return by pointer:

15 Cube *joinCubes(const Cube &s1, const Cube &s2)

…remember: never return a reference to stack memory!

Copy Constructor
When a non-primitive variable is passed/returned by value, a copy
must be made. As with a constructor, an automatic copy constructor
is provided for you if you choose not to define one:

All copy constructors will:

The automatic copy constructor:

1.

2.

To define a custom copy constructor:

Cube.h
4

5

…

9

class Cube {

 public:

 // …

 Cube(const Cube & other); // custom copy ctor

CS 225 – Things To Be Doing:

1. Exam 0 is ongoing
2. lab_debug due Sunday (11:59pm)
3. MP1 due Monday (11:59pm)
4. Daily POTDs every weekday

