

#6: Lifecycle of Classes

September 10, 2018 · Wade Fagen-Ulmschneider

Copy Constructor
When a non-primitive variable is passed/returned by value, a copy
must be made. As with a constructor, an automatic copy constructor
is provided for you if you choose not to define one:

All copy constructors will:

The automatic copy constructor:

1.

2.

To define a custom copy constructor:

cs225/Cube.h
4

5

6

7

8

9

10

11

12

13

14

15

class Cube {

 public:

 Cube(); // default ctor

 Cube(double length); // 1-param ctor

 double getVolume();

 double getSurfaceArea();

 private:

 double length_;

};

Recall the joinCubes function:

joinCubes-{byValue,byReference,byPointer}.cpp
15

16

17

18

19

20

21

22

Cube joinCubes(Cube ___ c1, Cube ___ c2) {

 double totalVolume = c1.getVolume() + c2.getVolume();

 double newLength = std::pow(totalVolume, 1.0/3.0);

 Cube result(newLength);

 return result;

}

Bringing Concepts Together:
How many times do our different joinCubes files call each constructor?

 By Value By Pointer By Reference

Cube()

Cube(double)

Cube(const Cube &)

Cubes Unite!
Consider a Tower made of three Cubes:

Tower.h
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

#pragma once

#include "cs225/Cube.h"

using cs225::Cube;

class Tower {

 public:

 Tower(Cube c, Cube *ptr, const Cube &ref);

 Tower(const Tower & other);

 private:

 Cube cube_;

 Cube *ptr_;

 const Cube &ref;

};

Automatic Copy Constructor Behavior:
The behavior of the automatic copy constructor is to make a copy of
every variable. We can mimic this behavior in our Tower class:

Tower.cpp
10

11

12

13

14

Tower::Tower(const Tower & other) {

 cube_ = other.cube_;

 ptr_ = other.ptr_;

 ref_ = other.ref_;

}

10

11

Tower::Tower(const Tower & other) : cube_(other.cube_),

 ptr_(other.ptr_), ref_(other.ref_) { }

…we refer to this as a ______________________ because:

Deep Copy via Custom Copy Constructor:
Alternatively, a custom copy constructor can perform a deep copy:

Tower.cpp
11

12

13

14

15

16

17

18

19

20

21

22

23

Tower::Tower(const Tower & other) {

 // Deep copy cube_:

 // Deep copy ptr_:

 // Deep copy ref_:

}

Destructor
The last and final member function called in the lifecycle of a class is
the destructor.

Purpose of a destructor:

The automatic destructor:

1.

2.

Custom Destructor:

cs225/Cube.h
5

6

7

8

9

10

11

class Cube {

 public:

 Cube(); // default ctor

 Cube(double length); // 1-param ctor

 Cube(const Cube & other); // custom copy ctor

 ~Cube(); // destructor, or dtor

 ...

Overloading Operators
C++ allows custom behaviors to be defined on over 20 operators:

Arithmetic + - * / % ++ --

Bitwise & | ^ ~ << >>

Assignment =

Comparison == != > < >= <=

Logical ! && ||

Other [] () ->

General Syntax:

Adding overloaded operators to Cube:

cs225/Cube.h cs225/Cube.cpp

1

2

3

4

…

16

17

18

19

20

…

#pragma once

class Cube {

 public:

 // ...

 // ...

…

10

11

12

13

14

15

16

17

18

…

/* ... */

/* ... */

Assignment Operator
Among all of the operators, one the assignment operator is unique:

1.

2.

CS 225 – Things To Be Doing:

1. Theory Exam #1 starts this Thursday, covers through today
2. MP1 due tonight; grace period until Tuesday @ 11:59pm
3. MP2 released on Tuesday (start early for extra credit!)
4. Lab Extra Credit Attendance in your registered lab section!
5. Daily POTDs every M-F for daily extra credit!

